دانلود مقاله بررسی ماهیت نور و ارتباط آن با پدیده لیزر

Word 307 KB 10318 84
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۳۰,۰۰۰ تومان
قیمت: ۲۴,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • فصل اول بررسی ماهیت نور و ارتباط آن با پدیده لیزر 1-1- ماهیت نور یونانی ها اولین کسانی هستند که کوشیدند طبیعت نور و چگونگی دیدن را توضیح دهند، بعد از آن، ظهور علوم تجربی دو نظریه مترادف را به ارمغان آورد.

    یکی از آنها نطریه ذره‌ای نیوتن بود که نور را متشکل از باریکه‌ای از ذرات دانسته که این ذرات تابع قوانین حرکت می‌باشند.

    نظریه دیگر نظریه موجی هوک و هویگنس است که طبیعت موجی را برای نور پیشنهاد کردند.

    پذیرش هر نظریه مستلزم توجیه پدیده‌های نور مانند انعکاس، تداخل ، شکست، پراش، فتوالکتریک، جذب و گسیل و ...

    می‌باشد و هر نظریه قادر است بعضی از پدیده های ذکر شده را توجیه کند برای مثال پدیده تداخل اولین بار توسط یانگ در سال 1801 ارائه شد که فقط با در نظر گرفتن نظریه موجی قابل توضیح است.

    پدیده پراش با توجه به اصل هویگنس و ایجاد موجک‌های ثانوی فقط بر اساس نظریه موجی قابل توجیه است که ایشان پیشنهاد کرد که پلاریزاسیون نور فقط به دلیل عرضی بودن امواج نور اتفاق می‌افتد و از این رو نتیجه می شود که ارتعاشات امواج نور بر امتداد انتشار آنها عمود است برخلاف امواج صوتی که به صورت طولی بوده و امتداد ارتعاش ذرات محیط در امتداد انتشار امواج صوتی است.

    با پیشرفت علم و فهم بیشتر طبیعت نور، ماکسول در سال 1864 به این نتیجه رسید که نور به مانند امواج الکترومغناطیس است که دارای سرعت ، فرکانس و طول موج می‌باشد.

    امروزه برای ما کاملا ثابت شده که امواج نور از دو مولفه میدان الکتریکی و مغناطیسی عمود بر هم تشکیل شده اند و جهت انتشار امواج عمود بر امتداد ارتعاش این دو است.

    در جدول 1-1 انواع امواج الکترومغناطیس و مشخصات آنها آورده شده است .

    گستره امواج مشخص شده در جدول شامل نواحی مختلفی است که مرز مشخصی برای آنها وجود ندارد.

    در سال 1887 هرتز موفق به تولید امواج الکترومغناطیس نامرئی شد.

    امروزه ما امواج الکترومغناطیس با فرکانس‌های بین را می‌شناسیم.

    اما پدیده‌های همچون فتوالکترویک، جذب و گسیل، توسط نظریه موجی نور قابل توجیه نیست.

    در پدیده فتوالکتریک تابش نور برخورد کننده به سطح فلز الکترون‌های آزاد می‌کند، رها شدن الکترون وقتی اتفاق می‌افتد که فرکانس پرتو تابش به حد کافی بالا باشد برای مثال در حالی که نور بسیار قوی قرمز قادر به ایجاد فوتوالکترون نیست نور آبی با شدت کم قادر به تولید فوتوالکترون است.

    چرا که انرژی جنبشی کافی دارد.

    بر اساس نظریه ذره‌ای نور در سال 1905 انیشتین به سادگی پدیده فتوالکتریک را توجیه کرد.

    ایشان نور برخورد کننده را متشکل از بسته های کوچک انرژی یا ذراتی به نام فوتون در نظر گرفت که انرژی هر فوتون متناسب با فرکانس آن است.

    E=hv که h ثابت پلانک و v فرکانس می‌باشد فوتون برخورد کننده می‌تواند انرژی خود را به یک الکترون بدهد و بر نیروی فتوالکتریک نیست، نه می‌تواند علت عدم تولید فوتوالکترون ها را وقتی نور قرمز با شدت زیاد به کار برده می‌شود توضیح دهد و نه گسیل خود به خودی الکترون‌ها وقتی که چشمه مناسب نور به کار گرفته می‌شود.

    بنابراین به نظر می‌رسد هر دو نظریه رقیب در مورد نور ، نه تنها مخالف هم نبوده بلکه مکمل یکدیگر می‌باشند و ما بایستی هر دوی آنها را بپذیریم، مادامیکه نور ، با نور برهم کنش انجام می‌دهد مانند پدیده تداخل نور ما نظریه موجی نور را در نظر می‌گیریم و وقتی که نور با ماده برهم کنش دارد مانند پدیده فوتوالکتریک ما نظریه ذره‌ای نور را به کار می‌بریم، این وضعیت به آنچه که طبیعت دو گانه تابش نامیده می‌شود منجر می‌گردد.

    1-2 – گسیل و جذب نور اینشتین اثر فوتوالکتریک را بر اساس کارهای قبلی پلانک توجیه نمود و نظریه کوانتومی نور برای بیان چگونگی تابش جسم سیاه را ارائه کرد.

    پلانک گسیل امواج الکترومغناطیس را به نوسان کننده هائی در داخل جسم سیاه نسبت داد که ایجاد میدان الکتریکی می‌کنند.

    فرض مهم این است که این نوسان کننده ها می‌توانند مقادیر انرژی معینی را داشته باشند و این انرژی مضرب صحیحی از E=hv است.

    مطلی که پلانک معرفی نموده امروزه به نظریه کوانتومی معروف است.

    اهمیت نظریه کوانتومی در بحث ما این است که سیستم های اتمی دارای ترازهای انرژی مجزا یا حالت های انرژی مجزا هستند.

    در سال 1823 نشان داده شد که هر عنصر اتمی یک طیف مشخصی را تولید می‌کند لیکن توضیح آن تا سال 1913 بوسیله بوهر میسر نشد، بوهر نظریه‌ای ارائه داد که او را قادر ساخت طول موج طیف ساده ترین اتم ها یعنی هیدورژن را پیش بینی کند.

    او مدل اتمی را در فورد رابه کار برد که در آن مدل، اتم از یک هسته سنگین با بار مثبت به وسیله تعدادی بارهای منفی به نام الکترون احاطه شده تشکیل شده است و اتم های هر جسم دارای تعداد معینی الکترون می‌باشند، برای توضیح این که چرا الکترون ها نمی‌توانند جذب بار مثبت هسته شوند او فرض کرد که الکترون ها روی مدارهائی به دور هسته مانند حرکت سیارات به دور خورشید در حرکت هستنمد.

    نیروهای جاذبه‌ای که احتیاج است تا الکترون بر روی مدار معینی باقی بماند با توجه به جاذبه کولنی هسته مثبت روی الکترون منفی تامین می‌گردد و می‌توانیم بنویسیم: V, e,m جرم،‌بار و سرعت الکترون و r شعاع مدار و نفوذپذیری در خلاء است.

    بوهر فرض کرد تنها الکترون هیدروژن مجاز است فقط مدارهای معینی را اشغال کند.

    وقتی که الکترون در یکی از این مدارهای مجاز یا حالت پایه قرار دارد هیچ اثری توسط اتم ساطع نمی شود.

    هر یک از این مدارهای مجاز به یک تراز معین یا حالت انرژی معی مربوط می‌شوند.

    برای توضیح خطوط طیفی هیدروژن ، بوهر فرض کرد که الکترون و به طبع اتم، با حرکت از یک مدار با انرژی بالاتر ( دوتر از هسته) به یک مدار با انرژی کمتر ( نزدیک تر به هسته ) انرژی از دست می‌‌دهد.

    این انرژی به صورت یک فوتون با انرژی hv است که که در این رابطه به ترتیب انرژی الکترون قبل و بعد از انتقال است از آنجائی که مدارهای متعدد و مجزایی وجود دارند بنابراین انتقالات مختلفی نیز ممکن است انجام شود از این رو اتم هیدروژن فرکانس های مختلفی را می تواند گسل دارد.

    (شکل 1-1) به طور کلی هر اتم تمایل دارد در حالت های انرژی پایین تر قرار گیرد.

    از این رو برای ایجاد طیف اتم هیدروژن لازم است الکترون ها را با تحریک کردن به ترازهای بالاتر بفرستیم.

    این عمل با حرارت و یا برخورد با الکترون های دیگر در لوله تخلیه الکتریکی و یا به کمک تابش با طویل موج های مناسب انجام پذیر است.

    هر طول موجی که توسط اتم در حالت تحریک گسیل می شود میتواند توسط آن وقتی که در ترازهای پایین انرژی قرار دارد جذب شود.

    البته فوتون های برخورد کننده باید خیلی نزدیک به اختلاف انرژی بین دو تراز انرژی اتمی درگیر باشد.

    در این حالت جذب تشدیدی نامیده می‌شود.

    به روش مشابهی بوهر قادر بود که خطوط طیفی دیگر اتم های چند الکترونی را که طیف پیچده‌تری دارند توضیح دهد.

    نظریه بوهر توصیف خوبی از حالت اتم بر پایه فیزیک کلاسیک و فیزیک مدرن که اساسا بر فیزیک کوانتومی استوار است، به دست می‌دهد.

    فیزیک کوانتومی برای هر الکترون در اتم چهار عدد کوانتومی تعریف میکند.

    این چهار عدد را می‌توان مختصات و مشخصه های الکترون تعریف کرد که انرژی آن را به کمک آنها می‌توان به دست آورد.

    درست مثل مختصات هندسی که برای تعیین محل یک نقطه مادی به کار گرفته می‌شود.

    تعیین مقادیر مجاز این اعداد کوانتومی تعیین انرژی‌های الکترون‌‌ها ر در هر اتم به کمک این اعداد مقدور می‌سازد به علاوه طول موج‌هایی که توسط اتم منتشر می‌شوند را می‌توان پیش بینی کرد.

    قابل توجه است که فوتون ها وقتی ایجاد می شوند که یک الکترون بین دو تراز انرژی کاملا معین انتقال یاد وانرژی فوتون ها نیز کاملا معین است وقتی فرکانس و طول موج مربوط به فوتون ها مقدار ثابت و معینی باشد می‌گوییم تابش تکفام است.

    برای اتم های پیچیده که دارای ترازهای الکترونی زیاد هستند تعداد زیادی از حالات ممکن است به طوری که طول موج های مختلف گسیل یا جذب شوند.

    بسته به اینکه الکترون ها اصولا در حالت های انرژی بالا ( تحریک شده ) و یا درحالت های انرژی پایین باشند پدیده های جذب و گسیل اتفاق می‌افتد.

    1-3- برهمکنش تابش نور و ماده اتمی را در نظر بگیرید که فقط دارای دو تراز انرژی باشد تراز بالایی را و تراز پایینی را می‌نامیم.

    در شرایط عادی اتم در تراز پایین قرارمی‌گیرد چرا که سیستم ها همیشه در حالت مینیمم انرژی پایدارتر هستند.

    اگر اتم در تراز پایین تحت تاثیر تابش با فرکانس قرار گیرد، داریم: اتم با جذب این فوتون تحریک شده و به تراز بالاتر می‌رود این فرآینمد به فرآیند جذب برانگیخته موسوم است.

    (شکل 1-2- ب) این اتم بلافاصله ( معمولا پس از چند نانو ثانیه) بعد از تحریک شدن به تراز بالاتر، با گسیل فوتونی با انرژی به تراز انرژی پایین‌تر باز می گردد که به این فرآیند، فرآیند گسیل برانگیخته یا گسیل تحریگی می‌گویند.

    (شکل 1-2- ج) اما اگر اتم ابتدا در تراز باشد و با گسیل فوتونی به تراز افت کند به این پدیده گسیل خود به خودی می‌گویند.

    (شکل 1-2-د) دونکته بسیار مهم در ارتباط با گسیل تحریکی وجود دارد که خواص نور لیزر به آن بستگی پیدا می‌کند.

    اول آن که فوتونی که با گسیل برانگیخته ایجاد می‌شود دارای همان انرژی فوتون برانگیزنده یا تحریک کننده است.

    بنابراین امواج ایجاد شده دارای همان فرکانس خواهند بود.

    دوم آن که امواج نوری مربوط به دو فوتون ایجاد شده هم فاز و همچنین دارای پلاریزاسیون مشابه بوده بنابراین همدیگر را تقویت و دامنه آنها افزایش می‌یابد پس ما امکان تقویت نور به وسیله گسیل‌های تحریکی تابش که در واقع همان نور لیزر است خواهیم داشت.

    در کسیل خود به خودی، اتم ها کاملا به بصورت اتفاقی گسیل کرده و رابطه خاصی بین امواج اتم ها وجود نداشته بنابراین تابش‌ها غیر همدوس بوده و همدیگر را تقویت نمی‌کنند.

    در شرایط معمولی تعادل گرمایی، گسیل خود به خودی در ناحیه مرئی طیف الکترومغناطیس، از اتم ها بسیار محتمل تر از گسیل برانگیخته می‌باشد.

    و تابش اکثر چشمه های نوری غیر همدوس است.

    بنابراین پدیده لیزر وقتی اتفاق می‌افتد که اتم را از حالت تعادل ترمودینامیکی خارج سازیم.

    فصل دوم تولید نور لیزر و اجزاء آن 2-1- مبانی نظری نور لیزر همانگونه که در فصل اول اشاره شد با ایجاد پدیده گسیل تحریکی، امکان تقویت نور و ایجاد نور لیزر وجود دارد.

    قبل از بحث در خصوص مبانی نظری لیزر اصطلاح ماده فعال را تعریف می‌کنیم.

    ماده فعال ماده ای است که اجرای پدیده گسیل تحریکی بر روی آن به راحتی امکان پذیر باشد.

    برای تولید نور لیزر با قرار دادن ماده فعال در بین دو آینه و تحریک ماده فعال، پدیده گسیل برانگیخته اتفاق افتاده و فوتون آزاد می‌شود.

    این فوتون ها بین دوآینه رفت و آمد کرده و ضمن هر بار عبور از ماده فعال بین دو ‌آینه تقویت می شوند چنانچه یکی از دو آینه به صورت نیمه آینه باشد باریکه نور لیزر پس از تقویت درحد مشخص از نیمه آینه خارج‌خواهد‌شد.(شکل 2-1) بنابراین اجزاء اصلی لیزر به سه بخش زیر تقسیم می‌شود: 1- ماده فعال 2- دمش کننده برای ایجاد پدیده گسیل برانگیخته بر روی ماده فعال 3- تشدید کننده فوتون گسیل شده از مرحله قبل تا حد مشخص در بخش های بعدی این فصل به تشریح موارد فوق می‌پردازیم.

    2-2- ماده فعال ماده فعال به عنوان اساسی ترین بخش لیزر بوده به نحوی که این ماده تعیین کننده نوع لیزر می‌باشد همانگونه که قبلا اشاره شد ماده فعال ماده ای است که اجرای پدیده گسیل برانگیخته بر روی آن به راحتی قابل انجام است.

    اگر یک ماده دو ترازی با ترازهای را به عنوان ماده فعال در نظر بگیریم برای آن که گسیل برانگیخته قابل توجه باشد، بایستی جمعیت ( تعداد اتم در واحد حجم) مربوط به تراز بالا نسبت به جمعیت تراز پایین بسیار افزایش یابد یعنی بایستی جمعیت معکوس ایجاد کرد .

    شکل 2-2 توزیع بولتزمن برای چنین اتمی را در تعادل ترمودینامیکی و همچنین در حالت جمعیت معکوس نشان می‌دهد.

    در تعادل ترمودینامیکی با افزایش دما، ایجاد جمعیت معکوس امکان پذیر نیست.

    چون با افزایش دما به نزدیک می‌شود لیکن هرگز از بیشتر نخواهد شد.

    برای ایجاد جمعیت معکوس ها اتم ها در ماده لیزری باید تحریک شوند یا به اصطلاح دمیده شوند که در بخش بعدی در خصوص دمش ماده لیزری بحث خواهد شد.

    یکی از راه های دمش، دمش اپتیکی است که با تابش قوی با فرکانس مشخص به مجموعه ای از اتم ها، بسیاری از اتم ها تابش را جذب کرده و از تراز به تراز می‌روند اما با دمش اپتیکی

  • فهرست:

    ندارد.


    منبع:

    لیزر و کاربرد‌ها «به زبان ساده»

    تألیف:

    مهندس محمد علی میرزایی، (عضو هیئت علمی دانشگاه هرمزگان، تابستان 84).


تحقیق دانش آموزی در مورد دانلود مقاله بررسی ماهیت نور و ارتباط آن با پدیده لیزر , مقاله دانشجویی با موضوع دانلود مقاله بررسی ماهیت نور و ارتباط آن با پدیده لیزر , پروژه دانشجویی درباره دانلود مقاله بررسی ماهیت نور و ارتباط آن با پدیده لیزر

نور چهار مشخصه اصلی دارد:   الف- طول موج(length wave) : فاصله بین دو نقطه یکسان موج می‌باشد که مشخص‌کننده رنگ موج است. با تعیین رنگ انرژی و طول موج می‌توان یک موج را نسبت به دیگر موجها سنجید. بعنوان مثال طول موج‌های کوتاه در طیف مرئی در ناحیه آبی و فوق بنفش قرار می‌گیرد.در حالیکه رنگ قرمز دارای طول موجهای بلندتری می‌باشد. فاصله بین این قله‌های موج آن چنان کوچک است که واحد ...

نور چهار مشخصه اصلی دارد: الف- طول موج(length wave) : فاصله بین دو نقطه یکسان موج می‌باشد که مشخص‌کننده رنگ موج است. با تعیین رنگ انرژی و طول موج می‌توان یک موج را نسبت به دیگر موجها سنجید. بعنوان مثال طول موج‌های کوتاه در طیف مرئی در ناحیه آبی و فوق بنفش قرار می‌گیرد.در حالیکه رنگ قرمز دارای طول موجهای بلندتری می‌باشد. فاصله بین این قله‌های موج آن چنان کوچک است که واحد آن را ...

مقدمه «اقرا بسم ربک الذی خلق» بخوان به نام پروردگارت که تو را آفرید. خدایا اولین سخن تو با پیامبرت خواندن بود. توخیر بندﻩات را در دانشمند بودن او میﺩانی. پس خدایا شناخت علوم بر ما آسان ساز. یعنی شناختن و دانستن چیزی همان طور که هست واین از صفات خداوند است. از آغاز آفرینش انسان تاکنون میلیونﻫا سال میگذرد. در این سالها انسان شاهد تغییرات زیادی در محیط پیرامونش بودهﺍست. تمامی این ...

مقدمه : لیزر این نور شگفت از نظر ماهیت هیچ تفاوتی با نور عادی ندارد و خواص فیزیکی لیزر ، آنرا از نورهای ایجاد شده از سایر منابع متمایز می‌سازد. از نخستین روزهای تکنولوژی لیزر ، به خواص مشخصه آن پی برده شد. و ما بصورتی گزینشی به این خواص از ماهیت فرآیند لیزر می‌پردازیم که خود این خواص بستری عظیم برای کاربردهای وسیع این پدیده ، در علوم مختلف بخصوص صنعت و پزشکی و ... ایجاد کرده ...

نور چهار مشخصه اصلی دارد: الف- طول موج(length wave) : فاصله بین دو نقطه یکسان موج می‌باشد که مشخص‌کننده رنگ موج است. با تعیین رنگ انرژی و طول موج می‌توان یک موج را نسبت به دیگر موجها سنجید. بعنوان مثال طول موج‌های کوتاه در طیف مرئی در ناحیه آبی و فوق بنفش قرار می‌گیرد.در حالیکه رنگ قرمز دارای طول موجهای بلندتری می‌باشد. فاصله بین این قله‌های موج آن چنان کوچک است که واحد آن را ...

راهنمایی که در دست دارید، برمبنای «توصیه های فرهنگستان تخصصی پوست آمریکا» و با اقتباس از کتاب «مراقبت از پوست و مو در سلامتی و بیماری» که تألیف گروهی از متخصصین و پزشکان صاحب نظر در زمینه پوست و مو و زیبایی می باشد، فراهم آمده است.هدف از تهیه مجموعه ای از راهنماها مانند آنچه که در پیش رو دارید، آگاهی دادن به بیماران در مورد ماهیت بیماری های پوستی و شناخت بایدها و نبایدها و ...

تحقیقات کشاورزی تزاید روزافزون جمعیت و کمبود مواد غذایی در دنیا موجب توجه دانشمندان به ازدیاد محصولات کشاورزی و همچنین بهبود کیفیت آنها گردیده است. در این راستا مواد رادیواکتیو به کمک بررسی‎های کشاورزی شتافت و انقلاب عظیمی در کشاورزی به وجود آورد به طوری که عناصر رادیواکتیو یا نشاندار در اکثر رشته‎های کشاورزی از جمله مدیریت آب و خاک و تغذیه گیاهی، اصلاح نباتات و ژنتیک، دامپروری، ...

امروزه لیزر کاربردهای بیشماری دارد که همه زمینه های مختلف علمی و فنی فیزیک-شیمی-زیست شناسی - الکترونیک و پزشکی را شامل می شود. همه این کاربردها نتیجه مستقیم همان ویژگی های خاص نور لیزر است لیزر چیست ؟ نور لیزر نوع کاملاً جدیدی از نور است؛ درخشان‌تر و شدیدتر از هرچه که در طبیعت یافت می‌شود. می‌توان نور لیزری آن‌چنان قوی تولید کرد که هر ماده‌ی شناخته شده‌ی روی زمین را در کسری از ...

لیزر ________________________________________ مقدمه بدون شک لیزر یکی از برجسته‌ترین ابزار علمی و فنی قرن بیستم بشمار می‌آید . پیشرفت سریع تکنولوژی لیزر از سال 1960 میلادی ، هنگامی که اولین لیزر با موفقیت تهیه شد ، شروع گردید . لیزر امروزه در زمینه‌های گوناگون از قبیل بیولوژی ، پزشکی ، مدارهای کامپیوتر ، ارتباطات ، سیستم‌های اداری ، صنعت ، اندازه‌گیری در زمینه‌های مختلف و … بکار ...

چکیده ساخت مواد و قطعات با کار کرد بالا (high performance) یکی از فاکتور های عمده پیشرفت صنایع مدرن بشمار می رود .بررسیهای بعمل آمده نشان می دهد که بدون مواد مهندسی و بدون استفاده از یافته های جدید علم و مهندسی مواد ,امکان حضور در حوزه های علمی و تخصصی و در میادین رقابت جهانی به سختی حاصل و یا امکان پذیر نخواهد بود . در این نوشتار ضمن اشاره به پتانسیل بالقوه بکارگیری اتصال و ...

ثبت سفارش