دانلود تحقیق شبکه های عصبی در هوش مصنوعی

Word 1 MB 18393 96
مشخص نشده مشخص نشده کامپیوتر - IT
قیمت قدیم:۳۰,۰۰۰ تومان
قیمت: ۲۴,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • الگوریتم ها در کامپیوتر ها اعمال مشخص و واضحی هستند که بصورت پی در پی و در جهت رسیدن به هدف خاصی انجام می شوند.حتی در تعریف الگوریتم این گونه آمده است که الگوریتم عبارت است از مجموعه ای ازاعمال واضح که دنبال ای از عملیات را برای رسیدن به هدف خاصی دنبال می کنند.آنچه در این تعریف خود نمایی می کند کلمه دنباله می باشد که به معنای انجام کار ها بصورت گام به گام می باشد.

    این امر مشخص می کند که همه چیز در الگوریتم های سنتی باید قدم به قدم برای کامپیوتر مشخص و قابل فهم و درک باشد.حتی در اولین الگوریتمهای هوش مصنوعی نیز بر همین پایه و کار قدم به قدم بنا نهاده شده اند.
    در اواخرقرن بیستم رویکرد به الگوریتم های جدید صورت گرفت که علتهای مختلفی داشت مثل حجیم بودن میزان محاسبات برخی مسایل و بالا بودن مرتبه زمانی الگوریتم های سنتی در مورد این مسایل باعث شد نیاز به الگوریتمهای جدید احساس شود.همچنین برخی کارهای انسان که هنوز قابل انجام توسط کامپیوتر نبودندو یا به بخوبی توسط کامپیوتر انجام نمی شدند باعث این رویکرد شد.
    مهمترین الگوریتمهای جدید عبارتند از :1- شبکه های عصبی 2- منطق فازی 3- محاسبات تکاملی











    شبکه عصبی چیست ؟


    این سوال که آیا انسان توانا تر است یا کامپیوتر موضوعی است که ذهن بشر را به خود مشغول کرده است.
    اگر جواب این سوال انسان است چرا کامپیوتر اعمالی مانند جمع و ضرب و محاسبات پیچیده را در کسری از ثانیه انجام می دهد، حال آنکه انسان برای انجام آن به زمان زیادی نیازمند است.

    واگر جواب آن کامپیوتر است چرا کامپیوتر از اعمالی مانند دیدن و شنیدن که انسان به راحتی آنها را انجام می دهدعاجزاست.جواب این مسئله را باید در ذات اعمال جستجو کرد .

    اعمال محاسباتی اعمالی هستند سریالی و پی در پی به همین دلیل توسط کامپیوتر به خوبی انجام می شوند.حال آنکه اعمالی مانند دیدن وشنیدن کارهای هستند موازی که مجمو عه ای از داده های متفاوت و متضاد در آنها تفکیک و پردازش می شوندو به همین دلیل توسط انسان به خوبی انجام می شوند.

    در واقع مغز انسان اعمال موازی را به خوبی درک و آنها را انجام می دهدو کامپیوتر اعمال سریالی را بهتر انجام می د هد.حال باید دیدآیا می توان این اعمال موازی و در واقع ساختار مغز انسان را به نوعی در کامپیوتر شبیه سازی کرد و آیا می توان امکان یادگیری که از جمله توانایی های انسان است به نوعی در کامپیوتر مدل سازی نمود.این کار به نوعی در انسان هم انجام می شود و زمان انجام آن عمدتا در کودکی است.به عنوان مثال یک کودک ممکن است یک شی مانند چکش را نشناسد اما هنگامی که آن را می بیند واسم آن را یاد می گیرد و سپس چند چکش متفاوت را می بینداین شی را بخوبی می شناسدو اگر بعد از مدتی چکشی را که تا کنون آن را ندیده است ببیند به راحتی تشخیص می دهد که شی مورد نظر یک چکش است و تنها از نظر جزئیات با چکش های مشابه که قبلا دیده است تفاوت دارد.
    لازم به ذکر است که شبکه های عصبی تنها در یادگیری کاربرد ندارند، بلکه تمام مسائل جدید وکلاسیک توسط آنها قابل حل می باشد.اما آنچه شبکه های عصبی بدان نیازمند است مثالها و نمونه های مفید وکافی است که بتواند به خوبی فضای مسئله را پوشش دهند.حال باید دیدچگونه می توان شبکه عصبی انسان را به نوعی شبیه سازی نمود، برای این کار نخست به ساختار مغز و سیستم عصبی انسان نگاهی گذرا می اندازیم.
    مغز انسان یکی از پیچیده ترین اعضای بدن است که تا کنون نیز به درستی شناخته نشده است و شاید اگر روزی به درستی شناخته شودبتوان شبیه سازی بهتری از آن انجام داد و به نتایج بهتری درباره هوش مصنوعی رسید.تحقیقات در مورد شبکه های عصبی نیز از زمانی آغاز شد که رامون سگال درباره ساختار مغز و اجزای تشکیل دهنده آن اطلاعات و نظراتی ارائه کرد.

    او در اوایل قرن بیستم مغز را به عنوان اجتماعی از اجزای کوچک محاسباتی دانست و آنها را نرون نامید.امروزه ما می دانیم که بیشتر فعالیتهای انسان را نرونها انجام می دهندو در کوچکترین فعالیتهای حیاتی انسان مانند پلک زدن نیز نقش حیاتی و اساسی دارند.این نکته هم بسیار جالب است بدانید که در بدن ما حدود نرون وجود دارد که هر کدام از این نرونها با نرون دیگر در ارتباط هستند.نرونها شکلها و انواع مختلفی دارند، اما به طور عمده در سه دسته تقسیم بندی می شوند.

    اما نرون ها از نظری دیگر به دو دسته تقسیم می شوند:1- نرونهای داخلی مغز که در فاصله های حدود 100میکرون به یکدیگر متصلند ونرونهای خارجی که قسمتهای مختلف مغز را به یکدیگر و مغز را به ماهیچه ها و اعضای حسی را به مغز متصل می کنند.اما همانطور که گفتیم نرونها از نظری دیگر به سه دسته تقسیم می شوند که عبارتند از:
    1- نرونهای حسی : کاری که این نرونها انجام می دهند این است که اطلاعات را از اندام های حسی بدن به مغز و نخاع می رسانند.


    2- نرونهای محرک :این نرونهافرمانهای مغز و نخاع را به ماهیچه ها و غدد و سایر اندام های حسی و تحت فرمان مغز می رسانند.
    3- نرونهای ارتباطی : این نرونها مانندیک ایستگاه ارتباطی بین نرونهای حسی ونرونهای محرک عمل می کنند .
    گفتنی است که نرون ها در همه جای بدن هستند وبه عنوان عنصر اصلی مغز محسوب می شوندوبه تنهایی مانند یک واحد پردازش منطقی عمل می کنند نحوه عملیات نرون بسیار پیچیده است و هنوز در سطح میکروسکوپی چندان شناخته شده نیست ، هر چند قوانین پایه آن نسبتا روشن است.

    هر نرون ورودی های متعددی را پذیرا است که با یکدیگر به طریقی جمع می شوند.

    اگر در یک لحظه تعداد ورودی های فعال
    نرون به حد کفایت برسدنرون نیز فعال شده و آتش می کند.

    در غیر این صورت نرون به صورت غیر فعال و آرام باقی می ماند.حال به بررسی اجزاءخود نرون می پردازیم:
    نرون از یک بدنه اصلی تشکبل شده است که به آن سوما گفته می شود.

    به سوما رشته های نا منظم طولانی متصل است که به آنها دندریت می گویند.

    قطر این رشته ها اغلب از یک میکرون نازکتر است و اشکال شاخه ای پیچیده ای دارند.شکل ظریف آنها شبیه شاخه های درخت بدون برگ است که هر شاخه بارها وبارها به شاخه های نازکتری منشعب می شود.دندریت ها نقش اتصالاتی را دارندکه ورودی هارا به نرون ها می رساند.این سلولها می توانندعملیاتی پیچیده تر از ععملیات جمع ساده را بر ورودی های خود انجام دهند، از این رو عمل جمع ساده را می توان به عنوان تقریب قابل قبولی از عملیات واقعی نرون به حساب آورد.
    یکی از عناصر عصبی متصل به هسته نرون آکسون نامیده می شود.این عنصر بر خلاف دندریت از نظر الکتریکی فعال است و به عنوان خروجی نرون عمل می کند.

    آکسون همیشه در روی خروجی سلولها مشاهده می شوند لیکن اغلب در ار تباط های بین نرونی غایب اند.در این مواقع خروجی ها و ورودی ها هر دو بر روی دندریت هاواقع می شوند.

    آکسون وسیله ای غیر خطی است که در هنگام تجاوز پتانسیل ساکن داخل هسته از حد معینی پالس ولتاژی را به میزان یک هزارم ثانیه ، به نام پتانسیل فعالیت ، تولید می کند.

    این پتانسیل فعالیت در واقع یک سری از پرش های سریع ولتاژ است.رشته آکسون در نقطه تماس معینی به نام سیناپس قطع می شود ودر این مکان به دندریت سلول دیگر وصل می گردد.

    در واقع این تماس به صورت اتصال مستقیم نیست بلکه از طریق ماده شیمیایی موقتی صورت می گیرد.سیناپس پس از آنکه پتانسیل آن از طریق پتانسیل های فعالیت در یافتی از طریق آکسون به اندازه کافی افزایش یافته از خود ماده شیمیایی منتقل کننده عصبی ترشح می کند.برای این ترشح ممکن است به دریافت بیش از یک پتانسیل فعالیت نیاز باشد.

    منتقل کننده عصبی ترشح شده در شکاف بین آکسون ودندریت پخش می شودو باعث می گرددمی گردد که دروازه های موجود در دندریت ها فعال شده و باز شود و بدین صورت یون های شارژ شده وارد دندریت می شوند.

    این جریان یون است که باعث می شود پتانسیل دندریت افزایش یافته و باعث یک پالس ولتاژ در دندریت شودکه پس از آن منتقل شده و وارد بدن نرون دیگر می گردد.

    هر دندریت ممکن است تحت تأثیرتعداد زیادی سیناپس باشد وبدین صورت اتصالات داخلی زیادی را ممکن می سازد.

    در اتصالات سیناپسی تعداد دروازه های باز شده بستگی به مقدار منتقل کننده عصبی آزاد شده داردو همچنین به نظر می رسدکه پاره ای سیناپس ها باعث تحریک دندریت ها می شوند در صورتی که پاره ای سیناپس ها دندریت ها را از تحریک باز می دارند.

    این به معنای تغییر پتانسیل محلی دندریت ها در جهت مثبت یا منفی می باشد.یک نرون خود به تنهایی می تواند دارای ورودی های سیناپسی متعددی در روی دندریت های خود باشد و ممکن است با خروجی های سیناپسی متعددی به دندریت های نرون دیگر وصل شود.
    یادگیری در سیستم های بیولوژیک
    تصور می شود یادگیری هنگامی صورت می گیرد که شدت اتصال یک سلول و سلول دیگر در محل سیناپس ها اصلاح می گردد.به نظر می رسد که این مقصود از طریق ایجاد سهولت بیشتر در میزان آزاد شدن
    ناقل شیمیایی حاصل می گردد.

    این حالت باعث می شود که دروازه های بیشتری روی دندریت های سمت مقابل باز شود و به این صورت باعث افزایش میزان اتصال دو سلول شود.

    تغییر میزان اتصال نرون ها به صورتی که باعث تقویت تماس های مطلوب شود از مشخصه های مهم در مدل های شبکه های عصبی است.
    ناقل شیمیایی حاصل می گردد.

    تغییر میزان اتصال نرون ها به صورتی که باعث تقویت تماس های مطلوب شود از مشخصه های مهم در مدل های شبکه های عصبی است.

    سازمان مغز مغز از قسمتهای مختلفی تشکیل شده و هر کدام از این قسمت ها مسئولیت انجام وظایف متفاوتی را به عهده دارد.

    در اانسان این سازماندهی کاملا مشهود است.

    بزرگترین قسمت مغز نیمکره های مخ است که قسمت عمده فضای داخلی جمجمه را اشغال می کند.

    مخ ساختار لایه ای دارد.آخرین لایه خارجی آن قشر مغز نامیده می شود ، جایی که سلولهای نرون برای تسهیل اتصالات داخلی کاملا به هم فشرده شده اند.نقش این قشر در انسان و حیوان کاملا شناخته نشده است ولی می توانیم شواهدی از آن نقش رااز طریق تحقیقاتی به دست آوریم که بر روی حیواناتی صورت گرفته که این بخش از مغز آنها خارج شده است.

    برای مثال یک سگ در این حالت می تواند به خوبی راه برود، غذا بخورد و بخوابد و حتی پارس کند .

    ولی در همان حال سگ کور می شودو احساس بویایی خود را از دست می دهد .

    به ویژه اینکه تمامی علاقه خود را به محیط اطراف از دست می دهد ، نسبت به افراد و شنیدن نام خود عکس العملی نشان نمی دهد و نسبت به سگ های دیگر حتی حتی از جنس مخالف بی تفاوت می ماند.

    در ضمن قدرت یادگیری را از دست می دهد.

    در واقع ویژگیهایی را که ما اصطلاحا هوش می نامیم از دست می دهد ،ویژگی هایی چون آگاهی ، علاقه ، تعامل با محیط و قدرت سازگاری و یادگیری.

    بنابراین به نظر می رسد که مخ بستر وظایف عالی تر مغز و هسته هوش مرکزی است.

    پژوهشگران سالها در مورد لایه قشر خارجی مغز تحقیق کرده اند و به تدریج به اسرار آن پی بردهاند .

    به نظر می رسدکه تقسیم وظایف در این قسمت از مغز حالت منطقه ای دارد،به طوری که هر قسمت ازقشر مغز نقش جداگانه ای مانند کنترل دست ،شنیدن ودیدن را ایفا می کند.به ویژه قسمت بینایی مغز جالب است.

    در قسمت بینایی ،تحریکات الکتریکی سلولها می تواند حالت احساس نور را موجب شود.

    تحلیل دقیق نشان داده است که لایه های مخصوص از نرون ها به جهت های معینی از تحریکات نوری حساس اند ، به طوری که مثلا یک لایه اکثرا به خطوط افقی و لایه دیگر اکثرا به خطوط عمودی حساسیت نشان می دهد.

    گر چه قسمت عمده ای از این ساختار به طور ژنتیکی از پیش تعیین شده است ، به نظر می رسد که آرایش سلولها و گرایش آن ها به جهات مختلف در سالهای اولیه زندگی فرا گرفته می شود.

    حیواناتی که در محیط صرفا دارای خطوط افقی پرورش می یابند در نهایت دارای ساختار نرونی نخواهند بود که نسبت به خطوط عمودی حساس باشد.

    این امر نشان می دهد که ساختار های مغزی از داده های محیطی تاثیر می پذیرند وصرفا از طرف عوامل ژنتیکی تعیین نمی شوند.

    این

  • مقدمه 1

    شبکه عصبی چیست ؟ 2

    یادگیری در سیستم های بیولوژیک 4

    سازمان مغز 6
    نرون پایه 7

    عملیات شبکه های عصبی 7

    آموزش شبکه های عصبی 10

    معرفی چند نوع شبکه عصبی 14
    پرسپترون تک لایه 14

    پرسپترون چند لایه 21
    backpropagation 25
    هاپفیلد 49

    ماشین بولتزمن 67

    کوهونن 83

    کاربردهای شبکه های عصبی 86

    منابع 90


تحقیق دانش آموزی در مورد دانلود تحقیق شبکه های عصبی در هوش مصنوعی, مقاله دانشجویی با موضوع دانلود تحقیق شبکه های عصبی در هوش مصنوعی, پروژه دانشجویی درباره دانلود تحقیق شبکه های عصبی در هوش مصنوعی

هوش محاسباتی یا (Computational-Intelligence) CI به معنای استخراج هوش، دانش، الگوریتم یا نگاشت از دل محاسبات عددی براساس ارائه به روز داده‌های عددی است. سیستم‌هایCI در اصل سیستم‌های دینامیکی مدل آزاد (Model-free) را برای تقریب توابع و نگاشتها ارائه می‌کند. در کنار این ویژگی بسیار مهم باید از ویژگی مهم دیگری در ارتباط با خصوصیات محاسباتی سیستم‌های CI نام برد، که در آن دقت، ...

چکیده: شبکه‌های عصبی مصنوعی از مباحث جدیدی است که دانشمندان علوم کامپیوتر به آن علاقمند شده‌اند و برای پیشرفت هرچه بیشتر علوم کامپیوتر وقت و هزینه بسیاری را صرف آن کرده و می‌کنند. این موضوع با ایده گرفتن از سیستم عصبی بدن انسان و با هدف شبیه‌سازی هرچه بیشتر کامپیوتر به انسان شکل گرفت و تا حال به خوبی پیشرفته است. از جمله کاربردهای این بحث می‌توان از شناسایی الگوها, پردازش تصویر ...

چکیده: در عصر حاضر در بسیاری از موارد ماشین ها جایگزین انسانها شده اند و بسیاری از کارهای فیزیکی که در گذشته توسط انسانها انجام می گرفت امروزه توسط ماشین ها صورت می گیرد . اگرچه قدرت کامپیوترها در ذخیره، بازیابی اطلاعات و اتوماسیون اداری ،.. غیر قابل انکار است، اما همچنان مواردی وجود دارد که انسان ناچار است خودش کارها را انجام دهد. اما به طور کلی ، موارد مرتبط با ماشین شامل ...

فصل اول : مقدمه 1-1 پیشگفتار انرژی الکتریکی به عنوان محور اصلی توسعه صنعتی در میان انواع انرژی از اهمیت خاصی برخوردار است. این انرژی با آنکه خود به انواع دیگر انرژی وابستگی دارد، اتکا شاخه‌های مختلف اقتصادی به آن در حدی است که براحتی می‌توان حد مصرف معقول این انرژی در یک جامعه را به عنوان شاخص عمده‌ای برای تعیین حد پیشرفت اقتصادی آن جامعه دانست. بر خلاف سهولت استفاده از این نوع ...

بیماران قلبی بعضی مواقع دچار حملات ناگهانی می شوند که این وضعیت باعث به وجود آمدن صدماتی در بیمار و یا باعث مرگ وی خواهد شد.حال با بررسی سیگنال ECG که شامل اطلاعات بسیار مهمی از وضعیت قلب است می توان، بسیاری از بیماری های قلبی را تشخیص داد. بنابراین پیش بینی این سیگنال ها حتی برای چند ثانیه برای پزشک معالج مفید خواهد بود. چون این سیگنال ها به صورت غیر خطی بوده و شبکه های عصبی ...

مقدمه در سالیان اخیر شاهد حرکتی مستمر از تحقیقات صرفاً تئوری به تحقیقات کاربردی در پردازش اطلاعات برای مسائلی که راه حلی برای آنها موجود نیست بوده ایم. با توجه به این حقیقت توجه زیادی به توسعه تئوریک سیستمهای دینامیکی هوشمند مدل- آزاد بر اساس داده های تجربی وجود دارد. شبکه های عصبی مصنوعی جزء آن دسته از سیستم های دینامیکی قرار دارند که با پردازش بر روی داده های تجربی دانش در ...

فصل 1 : مقدمه انسان و کامپیوتر انسان ها از کامپیوترها باهوش ترند. چرا چنین گفته می‌شود؟ درست است که بعضی از اعمالی را که ما به سختی انجام می دهیم یک کامپیوتر به سرعت و به راحتی انجام می دهد ،مانند جمع چندصد عدد ، اما این مطلب باعث نمی شود که ما یک کامپیوتر را باهوشتر از انسان بدانیم چون این سیستم هرگز قادر نمی باشد که اعمالی را که نیاز یه استدلال دارد و یا حل آنها از طریق شهودی ...

همانگونه که از تعریف فوق-که توسط یکی از بنیانگذاران هوش مصنوعی ارائه شده است- برمی‌آید،حداقل به دو سؤال باید پاسخ داد: 1 هوشمندی چیست؟ 2 برنامه‌های هوشمند، چه نوعی از برنامه‌ها هستند؟ تعریف دیگری که از هوش مصنوعی می‌توان ارائه داد به قرار زیر است: « هوش مصنوعی، شاخه‌ایست از علم کامپیوتر که ملزومات محاسباتی اعمالی همچون ادراک (Perception)، استدلال(reasoning) و ...

شبکه های عصبی مصنوعی در بسیاری از موارد تحقیق و در تخصص های گوناگون به کار گرفته شده و به عنوان یک زمینه تحقیقاتی بسیار فعال حاصل همکاری دانشمندان در چند زمینه علمی از قبیل مهندسی رایانه ، برق ، سازه ، و بیو لوژی اند . از موارد کاربرد شبکه ای عصبی می توان به طبقه بندی اطلاعات ، شناخت ویژگی های حروف و شکلها ، برآورد توابع و غیره اشاره کرد . کاربرد شبکه های عصبی در مهندسی عمران و ...

رسوبات انتقالی توسط رودخانه‌ها مشکلات زیادی خصوصاً جهت بهره‌برداری از سدها و سازه‌های آبی به وجود می‌آورند. در ده‌های اخیر تحقیقات بزرگی برای درک مکانیسم انتقال رسوب در جریان‌های طبیعی صورت گرفته است. تخلیه‌های صنعتی و پساب‌های کشاورزی به داخل سیستم آبزیان باعث می‌شود که رسوبات کف توسط موادسمی آلوده شوند. به همین ترتیب وقتی رژیم رودخانه تغییر می‌نماید این رسوبات آلوده به پایین ...

ثبت سفارش