دانلود تحقیق فیثاغورس

Word 180 KB 19952 13
مشخص نشده مشخص نشده مشاهیر و بزرگان
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
کلمات کلیدی: فیثاغورث - فیثاغورس
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • زندگی
    فیثاغورس، فیلسوف و ریاضی دان یونانی، (۵۶۹ - ۴۹۶ (پیش از میلاد))
    فیثاغورس در جزیره ساموس، نزدیک کرانه‌های ایونی، زاده شد.

    او در عهد قبل از ارشمیدس، زنون و اودوکس (۵۶۹ تا ۵۰۰ (پیش از میلاد)) می‌زیست.
    او در جوانی به سفرهای زیادی رفت و این امکان را پیدا کرد تا با مصر، بابل و مغان ایرانی آشنا شود و دانش آنها را بیاموزد.

    به طوری که معروف است فیثاغورس، دانش مغان را آموخت.

    او روی هم رفته، ۲۲ سال در سرزمین‌های خارج از یونان بود و چون از سوی پولوکراتوس، شاه یونان، به آمازیس، فرعون مصر سفارش شده بود، توانست به سادگی به رازهای کاهنان مصری دست یابد.

    او مدتها در این کشور به سر برد و در خدمت کاهنان و روحانیون مصری به شاگردی پرداخت و آگاهی‌ها و باورهای بسیار کسب کرد واز آنجا روانه بابل شد و دوران شاگردی را از نو آغاز کرد.
    وقتی او در حدود سال ۵۳۰، از مصر بازگشت، در زادگاه خود مکتب اخوتی (که امروزه برچسب مکتب فیثاغورس بر آن خورده است) را بنیان گذاشت که طرز فکر اشرافی داشت.

    هدف او از بنیان نهادن این مکتب این بود که بتواند مطالب عالی ریاضیات و مطالبی را تحت عنوان نظریه‌های فیزیکی و اخلاقی تدریس کند و پیشرفت دهد.
    فیثاغورس نیز به مانند سقراط جانب احتیاط را نگاه داشت و چیزی ننوشت .

    تعالیم وی از طریق شاگردانش به دست ما رسیده است .

    اکنون روشن شده است که که شاگردان فیثاغورس ، باعث و بانی بخش اعظمی از لباس چهل تکه تفکر ، آداب و رسوم ، ریاضیات ، فلسفه و اندیشه‌های عجیب و غریبی هستند که در مکتب فیثاغورس موجود است.
    شیوه تفکر این مکتب با سنت قدیمی دموکراسی، که در آن زمان بر ساموس حاکم بود، متضاد بود.

    و چون این مشرب فلسفی با مذاق مردم ساموس خوش نیامد، فیثاغورس به ناچار، زادگاهش را ترک گفت و به سمت شبه جزیره آپتین (از سرزمینهای وابسته به یونان) رفت و در کراتون مقیم شد.
    در افسانه‌ها چنین آمده است که متعصبان مذهبی و سیاسی، توده‌های مردم را علیه او شوراندند و به ازای نور هدایتی که وی راهنمای ایشان کرده بود مکتب و معبد او را آتش زدند و وی در میان شعله‌های آتش جان سپرد.
    این جمله معروف را دوستدارانش در رثای او گفته‌اند: «Sic transit gloria mundi» یعنی «افتخارات جهان چنین می‌گذرند».
    وی نظرات ریاضی خویش را با ترهات فلسفی و باورهای دینی درهم آمیخته بود.

    او در عین حال هم عارف و هم ریاضیدان بود و بقولی یکدهم شهرت او نتیجه نبوغ وی و مابقی ماحصل ارشاد و رسالت اوست.
    [ویرایش] فیثاغورس و مسئلهٔ استدلال در ریاضیات
    برای آنکه نقش فیثاغورس را در تبیین اصول ریاضیات درک کنیم، لازم است کمی درباره جایگاه ریاضیات در عصر وی و پیشرفتهایی که تا زمان وی صورت گرفته بود، بدانیم که این هم به نوبه خود، در خور توجه است.

    جالب است بدانید با اینکه مبنای ریاضیات بر «استدلال» استوار است، قبل از فیثاغورس هیچ کس نظر روشنی درباره این موضوع نداشت که استدلال باید مبنی بر مفروضات باشد.

    به عبارتی استدلال، مسئلهٔ تعریف شده‌ای نبود.
    در واقع می‌توان گفت بنا به قول مشهور، فیثاغورس در بین اروپاییان اولین کسی بود که روی این نکته ا صرار ورزید که در هندسه باید ابتدا «اصول موضوع» و «اصول متعارفی» را معین کرد و آنگاه به اتکاء آنها که «مفروضات» هم نامیده می‌شوند، روش استنتاج متوالی را پیش گرفت به پیش رفت.

    از نظر تاریخی «اصول متعارفی» عبارت بود از «حقیقتی لازم و خود بخود واضح».
    اینکه فیثاغورس استدلال را وارد ریاضیات کرد، از مهم‌ترین حوادث علمی است و قبل از فیثاغورس، هندسه عبارت بود از مجموعه قواعدی که ماحصل تجارب و ادراکات متفرق بوده‌اند؛ تجارب و قواعدی که هیچگونه ارتباطی با هم نداشتند حتی کسی در آن زمان حدس نمی‌زد مجموعهٔ این قواعد را بتوان از عدهٔ بسیار کمی اصول نتیجه گرفت.

    در صورتی که امروزه حتی تصور این موضوع که ریاضیات بدون استدلال چه وضع و حالی داشته است برای ما ممکن نیست.

    اما در آن عصر این موضوع گام بلندی به سوی نظام قدرتمند هندسه محسوب می‌شد.
    اینکه فیثاغورس استدلال را وارد ریاضیات کرد، از مهم‌ترین حوادث علمی است و قبل از فیثاغورس، هندسه عبارت بود از مجموعه قواعدی که ماحصل تجارب و ادراکات متفرق بوده‌اند؛ تجارب و قواعدی که هیچگونه ارتباطی با هم نداشتند حتی کسی در آن زمان حدس نمی‌زد مجموعهٔ این قواعد را بتوان از عدهٔ بسیار کمی اصول نتیجه گرفت.

    اما در آن عصر این موضوع گام بلندی به سوی نظام قدرتمند هندسه محسوب می‌شد.

    مجمع فیثاغوری بنیان فلسفی مجمع فیثاغوری بر آموزش رازهای عدد قرار داشت.

    به اعتقاد فیثاغورسیان، عدد، بنیان هستی را تشکیل می‌‌دهد، علت هماهنگی و نظم در طبیعت است، رابطه‌های ذاتی جهان ما، حکومت و دوام جاودانی آن را تضمین می‌کند.

    عدد، قانون طبیعت است، بر خدایان و بر مرگ حکومت می‌‌کند و شرط هرگونه شناخت و دانشی است.

    چیزها، تقلید و نمونه‌ای از عدد هستند.

    چنین برداشت ستایش‌آمیزی از عدد، با خیال‌بافی‌های اسرارآمیزی درآمیخته بود، که همراه با مقدمه‌های ریاضی، از کشورهای خاورنزدیک اقتباس شده بود.

    فیثاغوریان، ضمن بررسی نواهای موزون و خوش‌آهنگی که در موسیقی به دست می‌آید، متوجه شدند که آهنگ موزون روی صدای سه سیم، زمانی به دست می‌آید که طول این سیم‌ها، متناسب با عددهای ۳ و ۴ و ۶ باشد.

    فیثاغوریان این بستگی عدد را در پدیده‌های دیگر نیز پیدا کردند.

    از جمله، نسبت تعداد وجه‌ها، راسها و یال‌های مکعب هم برابر است با نسبت عددی ۶:۸:۱۲.

    همچنین فیثاغوریان متوجه شدند که اگر بخواهیم صفحه‌ای را با یک نوع چندضلعی منتظم بپوشانیم، فقط سه حالت وجود دارد؛ دور و بر یک نقطه از صفحه را می‌توان با ۶ مثلث متساوی‌الاضلاع، با ۴ مربع، و یا با ۳ شش‌ضلعی منتظم پر کرد، به طوری که دور و بر نقطه را به طور کامل بپوشاند.

    همانطور که مشاهده می‌شود، تعداد این چندضلعی‌ها با همان نسبت ۳:۴:۶ مطابقت دارد و اگر نسبت تعداد اضلاع این چندضلعی‌ها را در نظر بگیریم، به همان نسبت ۳:۴:۶ می‌رسیم.

    بر اساس همین مشاهده‌ها بود که مکتب فیثاغوری اعتقاد داشت همهٔ پدیده‌های گیتی از بستگی‌های عددی مشخصی پیروی می‌کنند و یک هماهنگی وجود دارد.

    از جمله فیثاغوریان گمان می‌کردند فاصلهٔ بین اجرام آسمانی را تا زمین در فضای کیهانی می‌توان با نسبت‌های معینی پیدا کرد.

    به همین دلیل بود که در مکتب فیثاغوری به بررسی دقیق نسبتها پرداختند.

    آنها به جز نسبت حسابی و هندسی، دربارهٔ نوعی بستگی هم که به همساز یا توافقی معروف است، بررسی‌هایی انجام دادند.

    سه عدد را به نسبت همساز گویند وقتی که وارون آنها به نسبت حسابی باشد.

    به زبان دیگر سه عدد تشکیل تصاعد همساز یا توافقی می‌دهند، وقتی وارون آنها تصاعد حسابی باشد.

    سه عدد ۳، ۴ و ۶ به نسبت توافقی هستند، زیرا کسرهای ۱/۳، ۱/۴ و ۱/۶ به تصاعد حسابی هستند زیرا: 1 / 4 − 1 / 3 = 1 / 6 − 1 / 4 به مناسبت اهمیت بی‌اندازه‌ای که مکتب فسثاغوری برای عدد قایل بود و فیثاغوریان توجه زیادی به بررسی و کشف ویژگی‌های عددها می‌کردند، در واقع، مقدمه‌های نظریه عددها را بنیان گذاشتند.

    با وجود این،مکتب فیثاغوری هم، مانند همه یونانی‌های آن زمان، عمل محاسبه را دور از اعتبار خود، که به فلسفه مشغول بودند، می‌دانستند.

    آنها مردمی را که به کارهای معیشتی و عملی می‌پرداختند و بیشتر از برده‌ها بودند، پست می‌شمردند و لوژستیک می‌خواندند.

    فیثاغورس می‌گفت که او حساب را والاتر از نیازهای بازرگانی می‌داند.به همین مناسبت در مکتب فیثاغوری، حتی شمار عملی هم مورد توجه قرار نگرفت.

    آنها تنها در باره ویژگی‌های عددها کار می‌کردند.

    در ضمن، ویژگی عدد را هم به یاری ساختمان‌های هندسی پیدا می‌کردند.

    با وجود این،رواج نوعی دستگاه مناسب برای عدد نویسی را در یونان، به فیثاغوریان و یا هواداران نزدیک آنها نسبت می‌دهند.در این نوع عدد نویسی که از فینیقی‌ها گرفته بودند، از حرف‌های الفبای فینیقی، برای نوشتن عددها استفاده شد: ۹ حرف اول الفبا برای عددهای از 1 تا ۹، ۹ حرف بعدی برای نشان دادن دهگان (۲۰،۱۰،...،۹۰) و ۹ حرف بعدی برای صدها (۲۰۰،۱۰۰،...،۹۰۰).

    برای حرف از عدد تشخیص داده شود، بالای عدد خط کوتاهی می‌گذاشتند.

    برای نشان دادن عددهای بزرگ‌تر از نشانه‌های اضافی استفاده می‌کردند.

    وقتی نشانه‌ای شبیه ویرگول را جلو عددی می‌گذاشتند، به معنای هزار برابر آن بود، برای ده هزار برابر عدد، یک نقطه جلو عدد می‌گذاشتند.

    [ویرایش] ریشه‌های شرقی دانش فیثاغورسیان کالین رنان، پژوهشگر و نویسنده‌ی چند کتاب درباره‌ی تاریخ علم و از نویسندگان دانش‌نامه‌ی بریتانیکا، در کتاب تاریخ علم کمبریج، به گوشه‌هایی از ریشه‌های شرقی دانش یونانیان اشاره کرده است: فیثاغورس نزدیک سال 560 پیش از میلاد در جزیره‌ی ساموس(در 50 کیلومتری میلتوس) به دنیا آمد.

    او به یک جنبش نوزایی مذهبی پیوست که پیروان آن باور داشتند روح می‌تواند از تن بیرون رود و به بدن انسان دیگری وارد شود و این باور به احتمال زیاد ریشه‌ی شرقی دارد.

    فیثاغورس در جوانی از مصر و بابل دیدن کرد و شاید همین دیدار بود که به او انگیزه داد ریاضیات بخواند و بگوید همه چیز عدد است.(صفحه‌ی 100) فیثاغورس می‌توانست قانون 3-4-5 را که درباره‌ی طول ضلع‌های مثلث قائم الزاویه است، از مصریان آموخته باشد، اما پژوهش‌های اخیر نشان می‌دهد که در بابل به چیزی برخورد که ما آن را نسبت فیثاغورسی می‌نامیم.

    بابلی‌ها پی برده بودند که عدهای نسبت می‌توانند 3-4-5 یا 6-8-10 یا ترکیبی از این دست باشند که اگر بزرگ‌ترین عددش مربع شود برابر مجموع مربع‌های دو عدد دیگر خواهد بود.

    این گام بلندی به جلو بود که فیثاغورسیان به‌خوبی از آن بهره گرفتند(صفحه‌ی 101).

    جنبه‌ی دیگری که فیثاغورسیان فریفته‌اش بودند، میانه‌ها بود.

    نخست آن‌ها در فکر میانه‌ی عددی بودند(یعنی عدد میانی در تصاعد عددی سه جمله‌ای.

    برای مثال، در تصاعد 4،5،6، میانه عدد 5 و در تصاعد 4، 8، 12، میانه 8 است).

    بعید نیست که این را فیثاغورس در سفرش به بابل آموخته باشد.(صفحه‌ی 103) اخترشناسی فیثاغورسی آشکارا بدهی فراوانی به بابلی‌ها داشت.(صفحه‌ی 104) افکار فیثاغورث ریاضیدان و فیلسوف یونانی به شکل گیری ریاضیات نوین و فلسفه غرب کمک کرده است .

    هدف او توضیح همه پدیده های طبیعی بر اساس ریاضیات بود .

    فیثاغورث بیش از هر چیز برای فرمولی که در مورد نسبتهای اضلاع مثلث راست گوشه ارائه کرده است معروف است.

    مفاهیم متعدد دیگری (مانند تصاعدهای حسابی و هندسی و عددهای مربع کامل ) که برای ریاضیات نوین نقش زیر بنایی دارند بر افکار فیثاغورث مبتنی هستند .

    فیثاغورث و پیروان او ریاضیات هماهنگ ها را که مبنای موسیقی امروز غرب را تشکیل می دهد ابداع کردند.

    حدود 580ق.م فیثاغورث در ساموس یونان به دنیا می آید.

    حدود 532 ق.م برای فرار از حکومت جابر ساموس به جنوب ایتالیا سفر می کند.

    حدود 525 ق.م یک آکادمی را در کروتون (که اکنون کروتونا نام دارد) تاسیس می کند .

    این آکادمی یک مدرسه و یک مکتب برادری مذهبی مبتنی بر اصول اخلاقی و فلسفی معینی است ، که در آن همه برادران می بایستی وفاداری و رازداری را رعایت کنند .

    در ریاضیات ،فیثاغورث و پیروان او با آرایشهای مختلف دسته هایی از ریگ آزمایش می کنند و در می یابند که دنباله های منظمی از اعداد پدید می آید.

    مثلاَ شکلهای مثلثی دنباله 10،6،3،1،...

    و شکلهای مربعی دنباله 16،9،4،1،...

    را ایجاد می کنند.

    کلمه calculate به معنی محاسبه (از calculus به معنی «سنگریزه» و نیز اصطلاح مربع (توان دوم) از این کاربرد ریگها اقتباس شده است .

    در هندسه ، آنها در می یابند که مجموع زوایای یک مثلث همیشه 180 درجه است.

    آنها همچنین این قضیه معروف را ارائه می کنند که مربع وتر یک مثلث راست گوشه برابر مجموع مربهای دو ضلع دیگر ان است .

    در موسیقی ، فیثاغورث و پیروان او با آزمایش بر روی تارهای کشیده شده ریاضیات اکتاوها را ابداع می کنند (هرگاه طول تاری را نصف کنیم ، نتی را که یک اکتاو پایینتر است ایجاد می کند،) در اخترشناسی ، آنها این نظریه را مطرح می کنند که جهان کروی است و زمین نیز کره ای در مرکز آن است.

    خورشید به طور سالانه و روزانه به دور آسمان می چرخد ، و ماه و سیاره ها نیز به همین ترتیب رفتار می کنند.

    فیثاغورث در آسیای صغیر (ترکیه امروز) به سفرهای وسیعی می پردازد و در آنها با بعضی از ریاضیدانان و فیلسوفان برجسته ان زمان تبادل نظر می کند.

    حدود 500ق.م در متاپونتوم (نزدیکی متاپونتوی امروز) در ایتالیا می میرد.

    قضیه د رمثلث قائم‌الزاویه ABC که زاویه A در آن قائمه است ، در صفحه رابطه‌ی زیر همیشه بین اضلاع برقرار است: می‌توان این قضیه را به صورت ساده‌تر بیان کرد : فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می‌سازیم این قضیه به ما توضیح می‌دهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت مربع ساخته شده روی وتر برابر است.

    مثلث قائم الزاویه مثلثی است که دارای یک زاویه قائم می‌باشد و به ضلعی که روبروی این زاویه در مثلث قرار دارد، وتر می‌گویند.

    در شکل اضلاع زاویه قائم با aوb و وتر با c نشان داده شده است.

    بیان دیگر قضیه به این صورت است که در یک مثلث قائم الزاویه مجموع مربعات دو ضلع قائم با مجذور وتر برابر است.

    جالب است بدانید که بیش از شصت روش هندسی برای اثبات این قضیه وجود دارد.

    اثبات قضیه می توان با توجه به شکل روبرو اثبات هندسی قضیه را به راحتی درک کرد.

    در هر دو شکل مربعی به ضلع a+b داریم.در شکل سمت راست چهار نمونه از مثلث قائم الزاویه دور مربع ساخته شده بروی وتر وجود دارد.

    و هر چهار مثلث دارای مساحت یکسان می باشند.

    با چند جابجایی در شکل سمت راست به شکل سمت چپ می‌رسیم.در این شکل همان چهار مثلث قبلی وجود دارند ولی مربعی که اضلاع آن به c بود به دو مربع به اضلاع a,b تبدیل شده است، که همان قضیه فیثاغورث را نشان می‌دهد نظریه های فیثاغورث ـ اعداد زوج و فرد مجذور عدد زوج ، یک عدد زوج است .

    مجذور عدد فرد ، یک عدد فرد است .

    ـ توانهای دوم ـ سه تایی های فیثاغورثی این نظریات از قضیه هندسی a2 + b2 = c2 گرفته شده است .

    ـ عدد 2 کوچکترین عدد به شمار می رفت چرا که عدد 1 اعداد دیگر را در بر نمی گرفت .

    عدد : یک فراوانی است که از چند واحد تشکیل شده است .

    عدد مصور عددی است که بتوان آنرا با استفاده از نقاط در شکلهای مثلث ، مربع و مستطیل نشان داد .

    این قضیه با فلسفه فیثاغورث هماهنگ بود چراکه مبنی بر این نکته بود که هر چیزی می تواند با یک عدد نشان داده شود .

    در علم ریاضی، قضیه فیثاغورث، یک رابطه در فضای اقلیدسی بین اضلاع یک مثلث قائم الزاویه را بیان می‌کند.

    اگر چه این قضیه قبل از آن که فیثاغورث آن را بیان کند توسط بابلیان و هندوها به کار برده می‌شد ولی به نام او ثبت گردید.

قضیه د رمثلث قائم‌الزاویه ABC که زاویه A در آن قائمه است ، در صفحه رابطه‌ی زیر همیشه بین اضلاع برقرار است: می‌توان این قضیه را به صورت ساده‌تر بیان کرد : فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می‌سازیم این قضیه به ما توضیح می‌دهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت ...

فیثاغورث حوالی سال 570 ق.م در ساموس زندگی خویش را آغازید.محضر اساتیدی چون طالس و آناکسیمندروس را درک نمود.او مردی دنیا دیده بود و چندین سال در سفر،بخصوص در مصر و بابل بود.در نهایت به کروتون رفت و در آنجا به تدریس پرداخت و انجمن عظیم تاریخی خود را به راه انداخت.بسیاری وی را پیشوا و پدر فلسفه الهی خوانده اند. چرا مکتب فیثاغورث را بررسی می کنیم؟ فیثاغورثیان قائل به حصول معرفت علمی ...

فیثاغورث در حدود سال 580 پیش از میلاد، در جزیره ساموس متولد شد. اقامت در مصر اثر فوق العاده ای در پیشرفت فیثاغورث داشت. فیثاغورث در نخستین دوره شکوفایی خود در کروتون (مستعمره یونانی در جنوب ایتالیا) زندگی می کرد. او در همین جا مکتب فیثاغورثی را بنیان گذاشت که در پیشرفت ریاضیات یونانی اثر فوقالعاده داشت. فیثاغورث اساس ساختمانی جهان هستی را عدد (و به تعبیر امروز عدد طبیعی) می ...

فیثاغورث (حدود سال های 580 تا 500 پیش از میلاد ) ، ریاضی دان و فیلثوف یونان باستان ، در ساموس متولد شد . در جوانی ، برای مطالعه ی دانش کاهنان مصری ، به آن سرزمین سفر کرد . او در بابل هم بود و در آنجا ، در طول 12 سال ، توانست اختر شماری (تنجیم) و اختر شناسی (نجوم) کاهنان بابلی را فرا گیرد . بعد از بابل ، به جنوب ایتالیا و سپس سیسیل رفت و در آنجا مکتب فیثاغوری را بنیان گذاشت که ...

افکار فیثاغورث ریاضیدان و فیلسوف یونانی به شکل گیری ریاضیات نوین و فلسفه غرب کمک کرده است . هدف او توضیح همه پدیده های طبیعی بر اساس ریاضیات بود . فیثاغورث بیش از هر چیز برای فرمولی که در مورد نسبتهای اضلاع مثلث راست گوشه ارائه کرده است معروف است. مفاهیم متعدد دیگری (مانند تصاعدهای حسابی و هندسی و عددهای مربع کامل ) که برای ریاضیات نوین نقش زیر بنایی دارند بر افکار فیثاغورث ...

ریاضیات و بند کفش « آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است ک بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه ...

ریاضیات همواره یکی از علوم فعال و زنده بوده است که براساس منطق استوار می باشد .پایگاه معرفت ریاضی خرد محض است و بر محور احساسات و خواسته ها نمی گردد .میزانی که با آن اندیشه های ریاضی را می سنجیم مستقل از آن اندیشه هاست . نتایج همگی بر مبنای قوانین و اندیشه های که بر حسب معیارهای قانونی ریاضیات ثابت شده است .ریاضیات همچنین نمادی از تلاش بی پایان انسانها برای کسب دانش و آگاهی است ...

جی . رابرت . اوپنهایمر در کتاب علم و فرزانگی در رابطه با سرگذشت کوانتوم چنین می گوید : « شاید هرگز تمامی تاریخ این حادثه روایت نشود . برای عرضه کردن آن هنری به آن اندازه توانا لازم است که برای روایت کردن سرگذشت اودیپوس یا کرامول ضرورت داشته است ، ولی این حادثه در قلمروی چندان دور از تجربه های روزانه ی ما صورت پذیرفته است که کم تر احتمال آن می رود که شاعر یا مورخی از آن با خبر ...

واژه اومانیسم(2) (‌humanism‌) یا انسان‌ گرایی در مباحث فکری و معرفتی فراوان به گوش ما خورده است. همچنین خاستگاه این واژه را همواره با غرب مرتبط دانسته و آن را دلیل جدایی غرب از دیانت می‌دانیم. به راستی غرب چگونه این واژه را ملاک خود قرار داد و بدان دست یازید‌؟ غرب، همواره در طول تاریخ در جریان بازسازی و قدرت بخشیدن به خود همواره خود را از سایر ملل و تمدن‌ها به ویژه شرق مستثنا ...

تاریخچه مختصر ریاضیات انسان اولیه نسبت به اعداد بیگانه بود وشمارش اشیاء اطراف خود را به حسب غریزه یعنی همان طور که مرغ خانگی تعداد جوجه هایش را میداند انجام میداد اما به زودی مجبور شد وسیله ی شمارش دقیق تری به وجود اورد لذا به کمک انگشتان دست دستگاه شمارش جدیدیپدید اورد که مبنای ان شصت بود .این دستگاه شمار که بسیار پیچیده میباشدقدیمی ترین دستگاه شماری است که اثاری از ان در کهن ...

ثبت سفارش
تعداد
عنوان محصول