دانلود تحقیق انتقال حرارت در توربین

Word 3 MB 25746 124
مشخص نشده مشخص نشده تاسیسات - مکانیک
قیمت قدیم:۳۰,۰۰۰ تومان
قیمت: ۲۴,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • در این فصل ما بر روی تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین تمرکز می نماییم.پیشرفتها در طراحی محفظه احتراق منجر به دماهای ورودی توربین بالا تر شده اند که به نوبه خود بر روی بار حرارتی و مولفه های عبور گاز داغ تاثیر می گزارد.دانستن تاثیرات بار حرارتی افزایش یافته از اجزایی که گاز عبور می کند طراحی روشهای موثرسرد کردن برای محافظت از اجزاء امری مهم است.گازهای خروجی از محفظه احتراق به شدت متلاطم می باشد که سطوح و مقادیر تلاطم 20تا 25% در پره مرحله اول می باشد.مولفه های مسیر گاز داغ اولیه ،پره های هادی نازل ثابت و پره های توربین درحال دوران می باشد.

    شراعهای توربین، نوک های پره، سکوها و دیواره های انتهایی نیز نواحی بحرانی را در مسیر گاز داغ نشان می دهد.

    برسی های کار بردی و بنیادی در ارتباط با تمام مولفه های فوق به درک بهتر و پیش بینی بار حرارتی به صورت دقیق تر کمک کرده اند .

    اکثر برسی های انتقال حرارت در ارتباط با مولفه های مسیر گاز داغ مدل هایی در مقیاس بزرگ هستند که در شرایط شبیه سازی شده بکار می روند تا درک بنیادی از پدیده ها را فراهم سازد.

    مولفه ها با استفاده از سطوح صاف و منحنی شبیه سازی شده اند که شامل مدل های لبه راهنما و کسکید های ایرفویل های مقیاس بندی شده می باشد.

    در این فصل، تمرکز بر روی نتایج آزمایشات انتقال حرارت بدست آمده توسط محققان گوناگون روی مولفه های مسیر گاز خواهد بود.

    انتقال حرارت به پره های مرحله اول در ابتدا تحت تاثیر پارامترهای از قبیل پروفیل دمای خروجی محفظه احتراق،تلاطم زیاد جریان آزاد و مسیر های داغ می باشد .انتقال حرارت به تیغه های روتور مرحله اول تحت تاثیر تلاطم جریان آزاد متوسط تا کم ، جریان های حلقوی نا پایدار ، مسیر های داغ و البته دوران می باشد.


    2.1.1- سرعت خروجی محفظه احتراق و پروفیل های دما
    سطوح تلاطم در محفظه احتراق خیلی مهم هستند که ناشی از تاثیر چشمگیر انتقال حرارت همرفتی به مولفه های مسیر گاز داغ در توربین می باشد.

    تلاطم تاثیر گزار بر روی انتقال حرارت توربین ها در محفظه احتراق تولید می شود که ناشی از سوخت به همراه گاز های کمپرسور می باشد.آگاهی از قدرت تلاطم تولید شده توسط محفظه احتراق برای طراحان در بر آورد مقادیر انتقال حرارت در توربین مهم است.تلاطم محفظه احتراق کاهش یافته، می تواند منجر به کاهش بار حرارتی در اجزاء توربین و عمر طولانی تر و همچنین کاهش نیاز به سرد کردن می شود.

    بر سی های انجام شده بر روی اندازه گیری سرعت خروجی محفظه احتراق و پروفیل های تلاطم متمرکز شده است.


    Goldstein سرعت خروجی و پروفیل های تلاطم را برای محفظه احتراق مدل نشان داد.Moss وOldfield طیف های تلاطم را در خروجی های محفظه احتراق نشان دادند.هرکدام از بر سی های فوق در فشار اتمسفر و دمای کم انجام شد.

    اگرچه بدست آوردن بدست آوردن انرازه گیری ها تحت شرایط واقعی مشکل است اما برای یک طراح توربین گاز درک بهبود هندسه محفظه احتراق و پروفیل های گاز خروجی از محفظه امری ضروری است.

    این اطلاعات به بهبود شرایط هندسه و تاثیرات نیاز های سرد کردن توربین کمک می نماید.


    اخیرا"،Goebel سرعت محفظه احتراق و پروفیل های تلاطم در جهت موافق جریان یک محفظه احتراق کوچک با استفاده از یک سیستم سرعت سنج دوپلر ولسیمتر(LDV)را اندازه گیری کردنند.آنهاسرعت نرمالیزه شده،تلاطم وپروفیل های دمای موجود برای تمام آزمایش های احتراق را نشان دادند.آنها یک محفظه احتراق از نوع قوطی مانندبکار رفته در موتور های توربین گاز مدرن را استفاده کردند، که در شکل1-2نشان داده شده است.جریان از کمپرسور و از طریق سوراخ ها وارد محفظه احتراق می شود و با سوخت محترق در محل های متفاوت در جهت موافق جریان مخلوط می شود.

    طراحی محفظه احتراق حداقل مستلزم یک افت فشار از طریق محفظه احتراق تا ورودی توربین است.فرایند محفظه احتراق توسط اختلاط تدریجی هوای فشرده با سوخت در محفظه قوطی شکل کنترل می شود.

    طراحان محفظه احتراق نوین نیز بر روی مشکلات و مسائل ترکیب و فرایند اختلاط هوا-سوخت تمرکز می نمایند احتراق تمیز نیز یک مسئله و کانون برای طراحان ناشی از استاندارد های محیطی الزامی شده توسط دولت فدرال آمریکا و EPA می باشد.

    با این حال ،طراح محفظه احتراق یک مسئله مورد بحث در این کتاب نمی باشد.

    شکل 2-2 تاثیر احتراق بر روی سرعت محوری ،شدت تلاطم محوری،سرعت پیچ وتاب( مارپیچی )و شدت تلاطم پیچ وتاب را نشان میدهد.

    تمام سرعت ها توسط خط مرکزی سرعت اندازه گیری شده و در مقابل شعاع نرمالیزه رسم شدند.جریان جرم و فشار هوا برای قدرت های مختلف احتراق اندازه گیری شدند.افزایش جریان سوخت باعث افزایش استحکام احتراق گردید.دمای شعله آدیاباتیک تغییر داده شد.هوای فشرده در یک موتور توربین گاز ناشی از فرایند تراکم پیش گرم می باشد .با این حال،در این برسی،هوا پیش گرم نمی شود.جریان جرم وفشار0.45 kg/s و6.8 اتمسفر بودند.دما های شعله از 71 تا 1980 متغیر بود.تاثیر احتراق شدیدا" آشکار است هنگامی که حالت آتش گرفته را با بقیه حالتهای آتش گرفته مقایسه می نماییم.سسرعت محوری و سرعت پیچ وتاب(مارپیچی) شدیدا"تحت تاثیر احتراق هستند،مقادیر پیچ وتاب توسط احتراق کم میشود.کاهش در پیچ وتاب می تواند در شدت تلاطم مشاهده شود.مقادیر اوج در شدت تلاطم از 10 تا 16% از حالت غیر مشتعل تا کاملا"مشتعل کاهش یافتند.

    پروفیل های دما نیز برای حالت های احتراق اندازه گیری شدند.شکل 3-2 تاثیر سوراخ های رقیق سازی را برای دما های آتش زدن مشابه(1200 ) مقایسه مینماید.پروفیل دما نسبتا"صاف و یکنواخت و بدون سوراخ های رقیق سازی ،با مقادیر اوج در خط مرکز می باشد.

    با این حال ،افزودن سوراخ های رقیق سازی باعث کاهش مقادیر دما بین خط مرکز و لبه ها می گردد.آگاهی از پروفیل دمای خروجی محفظه احتراق یک ضرورت برای محاسبات انتقال حرارت مسیر گاز می باشد.اندازه گیری های پروفبل خروجی دما یک روال تولید کنندگان توربین گاز است.پروفیل های دمای گاز ورودی برای محاسبات انتقال حرارت مولفه مسیر گاز برای براورد کردن دماهای مولفه لازم هستند.

    مقایسه پروفیل های دمای محفظه احتراق ناشی از منحصر بفرد بودن طراحی امری دشوار است.با این حال ،برسی های فوق آگاهی هایی در مورد سرعت ، شدت تلاطم و پروفیل های دما و تاثیرات احتراق برروی آنها فراهم می کنند.

    مقیاس اندازه دما یک عامل مهم برای انتقال حرارت مسیر گاز است.

    با این حال، برسی های فوق هیچ نوع اطلاعاتی در مورد مقیاس اندازه دما فراهم نمی کنند.

    2.2- انتقال حرارت در مرحله های توربین: 2.2.1 – مقدمه: یک مرحله توربین شامل یک ردیف از پره های هادی نازل یا استاتور و یک ردیف از پره های دوران کننده موسوم به روتورها میباشند.سیال وارد معبرهای توربین شده و در جهت لبه پره های هادی روتور خمیده می شود.

    یک بخش از انرژی سیال به انرژی مکانیکی ناشی از حرکت دورانی پره های روتور تبدیل می شود.پره های روتور به محور توربین متصل هستند.

    حرکت دورانی منتقل شده به محور برای راه اندازی کمپرسور استفاده می شود.شکل 4-2 یک مرحله توربین را نشان داده که از یک معبر پره هادی نازل و یک معبر پره روتور تشکیل شده است.نمودار سرعت برای مرحله(استیج)نیز نشان داده می شود.

    2.2.2- استیج توربین موتور واقعی: درک جنبه های انتقال حرارت برای تمام مولفه های(اجزاء) توربین تحت شرایط واقعی امری مهم است.بعنوان نمونه، سنجش هایی که بر روی یک توربین تک مرحله تحت شرایط موتور می توانند برای فراهم کردن تمام اطلاعات انتقال حرارت درباره اجزای مسیر گاز استفاده شود.تجهیزات و آزمایشات در مورد استیج های توربین واقعی تحت شرایط موتور بسیار نادر هستند.فقدان ابزارهای دقیق اندازه گیری دما بالا و دشواری در تجهیز توربین با دستگاه های اندازه گیری دما و فشار از جمله دلایل تلاش های محدود در بررسی انتقال حرارت یک استیج واقعی تحت شرایط موتور واقعی می باشند.

    اکثر نتایج اولیه بر روی انتقال حرارت روتور- استاتور واقعی توسطDunn از مرکز فن آوری پیشرفته Calspan تهیه شده اند.Dunn مقدار قابل توجهی از اطلاعات درباره اندازه گیری های فلوی( جریان ) حرارت برای پره های هادی نازل(دیوار انتهای وایرفویل ها)،پره روتور، نوک روتور، سکو و شراع ها(shroud) را ارائه کرد.

    Dunn از یک توربین گردان کامل از موتور Gerratt TFE 731-2 استفاده کرد.آنها اندازه گیری فلوی حرارت درباره پره هادی نازل (NGV)، روتور و شراع توربین گزارش کردند.یک مجموعه شوک- تونل برای ارائه شرایط خوب تعریف شده در نظر گرفته شد و تعداد کافی از پارامترها برای بهبود اطمینان در اطلاعات طراحی و فنون در حال توسعه مطرح گردید.

    اندازه گیری های فشار استاتیک با استفاده از آشکار سازهای فشار بر روی مقطع کلی توربین بدست آمدند.گیج های جریان حرارت فیلم نازک در استیج توربین روی دیوار انتهایی نوک NGV و مکش موتور وسطوح فشار نصب شدند.شکل 5-2 مجموعه تونل- شوک بکاررفته توسطDunn را نشان می دهد.

    Dunn نیز اندازه گیری های فشار و فلوی حرارت را برای یک استیج توربین با نسبت کم ارائه کرد.

    در برسی های فوق الذکر،آنها یک استیج پر فشار با یک نسبت تقریبا" 1.5 را مطاله کردند.یک توربین نیروی هوایی/ Garentt با نسبت کم (LART) بایک نسبت تقریبا"1.5 برای این بررسی استفاده گردید.

    یک مجموعه تونل باد لوله مانند برای شوک مشابه در برسی های اولیه استفاده گردید.شکل 6-2 طرحی از استیج LART رانشان میدهد.عدد ورودی ،فشار کلی،دمای کلی وجریان وزن بر روی شکل نشان داده می شوند.

    اندازه گیری ها برای توپی NGV و دیواره های انتهایی نوک و پره روتور برای این استیج بدست آمدند.

    شکل 7-2 توزیع های فشار اندازه گیری شده بر روی NGV وخطوط میانی روتور را نشان می دهد.

    توزیع های فشار بطور واضح بالا ترین و پایین ترین محل های سرعت NGV وسطوح پره در امتداد خط مرکزی را نشان می دهند.

    شکل 8-2 توزیع عدد stanton را برای خط میانی NGV نشان می دهد.خطوط پر و خط چین طرح توزیع های عدد stanton محاسبه شده را بر اساس روابط صفحه تخت لایه ای و تلاطم به ترتیب نشان می دهند.

    بالا ترین عدد stanton در محدوده فاصله سطح بر روی سطح فشار رخ می دهد.

    آنگاه عددstanton به سرعت بر روی سطح فشار تا حدود نصف مقدار در فاصله سطح، 11% افت می کند وسپس بتدریج بر روی سطح فشار کل تا دنباله لبه افزایش می یابد.توزیع های فشار آشکار میباشد که جریان سطح فشار در 50% فاصله سطح اولیه خیلی آهسته است و سپس سرعت به طرف دنباله لبه زیاد می شود.

    این رفتار در عدد stanton به انتقال لایه مرزی تلاطم – لایه ای معروف می باشد که در حدود فاصله سطح 6% رخ می دهد(نسبت داده می شود).

    وقتی انتقال در فاصله سطح 25% کامل می شود،عدد stanton بتدریج بطرف دنباله لبه کاهش مییابد.

    از این روابط، بنظر می رسد که سطوح فشار و مکش دارای لایه های مرزی تلاطم قوی هستندو اعداد stanton پیش بینی شده خیلی کمتر از مقادیر اندازه گیری شده هستند.

    Dunn اندازه گیری های مربوط به توپی NGV و دیواره های انتهایی نوک را انجام داد.شکل 9-2 اطلاعات عددstanton را برای محل های نزدیک دیواره انتهایی سطح فشار ،وسط دیواره انتهایی و نواحی دیوار انتهای سطح مکش مجاور نشان می دهد.

    توپی و نوک دیواره انتهای روشهای مشابه را نشان می دهند.

    اعدادstanton در حدود 60% فاصله سطح از لبه راهنما به دنباله لبه غیر تخت می باشند و سپس به طرف دنباله لبه افزایش می یابد .

    اعداد stanton بالاتر نزدیک به دنباله لبه ممکن است ناشی از جریان شتاب دار باشد.

    شکل 10-2 توزیع عددstanton بر روی تیغه روتور را نشان می دهد.

    تحلیل اطلاعات بخوبی تحلیل برای NGV ناشی از مسئله اضافی بدست آوردن اطلاعات بر روی یک مولفه گردان نمی باشد.توزیع های عدد stanton مشابه روی سطوح فشار ومکش پره می تواند به دوران پره کمک نماید.

    Dunn نشان می دهد که آنها مشاهده کردند تاثیر دوران تغییرات توزیع عدد stanton برروی فویل هوای را کاهش میدهد.

    عدد اوج stanton در فصله تقریبی 3.5% در سمت فشار رخ می داد.

    عدد stanton به سرعت از لبه هدایت کننده تا حدود 30% فاصله سطح سقوط می کند.

    توزیع فشار برای پره نشان می دهدکه جریان در حدود37% فاصله سطح در طرف مکش سونیک می شود.در این نقطه عددstanton سطح زیاد می شود و به حداکثر مقدار فاصله سطح دیگر حدود 70% میرسد.جدای از فاصله سطح 70% ، اعداد stanton به طرف دنباله لبه کاهش می یابد .

    با این حال Dunn هیچ اندازه گیری نزدیک ناحیه دنباله لبه ندارد مگر یک نقطه واحد در فاصله سطح 90% .

    روی سطح فشار پره عدد stanton از یک مقدار حداکثر در فاصله دور 3.5% تا یک مقدار حداقل در فاصله سطح 25% افت می کند.این یک ناحیه دارای شیب فشار قوی میباشدکه


تحقیق دانش آموزی در مورد دانلود تحقیق انتقال حرارت در توربین, مقاله دانشجویی با موضوع دانلود تحقیق انتقال حرارت در توربین, پروژه دانشجویی درباره دانلود تحقیق انتقال حرارت در توربین

در این تحقیق ما بر روی تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین تمرکز می نماییم.پیشرفتها در طراحی محفظه احتراق منجر به دماهای ورودی توربین بالا تر شده اند که به نوبه خود بر روی بار حرارتی و مولفه های عبور گاز داغ تاثیر می گزارد.دانستن تاثیرات بار حرارتی افزایش یافته از اجزایی که گاز عبور می کند طراحی روشهای موثرسرد کردن برای محافظت از اجزاء امری مهم ...

مقدمه و تاریخچه هیدرولیک علم استفاده از مایع محدود ، برای انتقال نیرو و حرکت و یا تبدیل منبع قدرت به نیروی قابل استفاده می باشد و هیدرولیک صنعتی یعنی انتقال دادن و فرمان دادن به نیروها و حرکات توسط مایع . از زمانهای قدیم ، هیدرولیک مورد استفاده بشر بوده و مصریها ظاهراً در این کار پیش‌قدم بوده اند و آنها وسیله‌ای ساخته یودند که توسط آن بتوانند آب رودخانه نیل را به ارتفاع بالاتری ...

بررسی توزیع ولتاژ و شار حرارتی در قرص‌های Zno در برق‌ گیر های فشار قوی با کمک روش عناصر محدود : هر تجهیز در سیستم فشار قوی برای ولتاژ معینی ساخته می‌شود ولی درطول کار، اضافه ولتاژهایی پیش می‌آیند که ممکن است برای دستگاه خطرناک باشند. به منظور جلوگیری از خطر اضافه ولتاژها باید از طرفی مقدار اضافه ولتاژ را تا حد ممکن پایین آورد و از طرف دیگر استقامت عایقی تجهیز را بیشتر از سطح ...

هوای فشرده تولید شده آنگاه وارد اتاق احتراق یعنی جائیکه سوخت در آن محترق می گردد ، شده و در آنجا درجه حرارت گاز بالا می رود که باعث می شود حجم گاز با فشار ثابت افزایش یابد و گاز عامل کار برای توربین فراهم گردد . پس از انبساط گاز در توربین و تبدیل مقدار از انرژی گاز به کار مکانیکی روی شافت توربین ، گاز بداخل ناحیه اگزوز میرود و بالاخره بداخل هوای آزاد تخلیه می گردد . پره هایی که ...

با توجه به روند رو به رشد صنایع و لزوم استفاده از نیروی برق در کشورهای جهان , کسترش نیروگاهها در دستور کار اجرایی کشورهای مختلف قرار گرفته است و این امر به توسعه و گسترش نیروگاه های و پیشرفت های چشم گیری در زمینه فن آوری نیروگاهی منجر شده است . از آنجا که مهمترین عامل تولید انرژی الکتریکی تبدیل سوخت های فسیلی و گازی به انرژی الکتریکی میباشد می باشد لذا احتراق در نیروگاه های ...

هزینه انتقال و توزیع برق سهم بالائی از هزینه تولید انرژی را در بر می گیرد این میزان برای شبکه های رایج تا 500 دلار به ازای هر KW می رسد. در مسیر انتقال و توزیع الکتریسیته تا 7% انرژی هدر می رود بنابراین چنانچه توزیع تولید جایگزین انتقال و توزیع الکتریسیته گردد هزینه انرژی الکتریکی به مقدار قابل توجهی کاهش خواهد یافت. در صنعت برق آمریکا در دهه 1990 توزیع تولید گسترش بیشتری یافته ...

فصل اول : تقسیم بندی انواع بویلر دیگ بخار (BOILER , STEAM GENERATOR) تعریف : دیگ های بخار برای تولید بخار آب گرم بمنظور تولید برق ، استفاده در پروسه های صنعتی و گرمایش بکار می روند. دیگهای بخار بر این اساس طراحی می شوند که انرژی را که معمولاً از احتراق سوختها بدست می آید به سیال درون دیگ انتقال می دهند و بخار یا آبگرم با فشار ، درجه حرارت و کیفیت مورد نیاز تولید می کنند و در این ...

مقدمه نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی ...

واحد های نیروگاه گازی از نوع GE ,MS5001-25MW Frame 5 ساخت کشور آمریکا می باشند که هر واحد آن از اجزاء کمپرسور ، اتاق احتراق ، قطعات انتقال ، توربین ، اگزوز، گیربکس و ژنراتور تشکیل می گردند. توربین گازی یکی از انواع مولد قدرت که بدلیل کاربرد وسیع آن در تولید انرژی در نیروگاههای زمینی و نیز عامل حرکت کشتیهای در حمل و نقل تجاری و نظامی در زندگی انسان اهمیت فراوان یافته است . توربین ...

مقدمه گستردگی نیاز انسان به منابع انرژی همواره از مسائل اساسی مهم در زندگی بشر بوده و تلاش برای دستیابی به یک منبع تمام نشدنی انرژی از آرزوهای دیرینه انسان بوده است، از نقوش حک شده بر دیوار غارها می‌توان دریافت که بشر اولیه توانسته بود نیروی ماهیچه‌ای را به عنوان یک منبع انرژی مکانیکی به خوبی شناخته و از آن استفاده کند. ولی از آنجایی که این نیرو بسیار محدود و ضعیف است انسان ...

ثبت سفارش