دانلود مقاله ذره بین

Word 542 KB 4479 85
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۳۰,۰۰۰ تومان
قیمت: ۲۴,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • بارها ملاحظه کرده‌ایم که بچه‌ها با استفاده از یک ذره بین می‌توانند آتش روشن کنند و یا پیر مردها برای خواندن قرآنهای با خطوط ریز از ذره بین استفاده می‌کنند.

    همه اینها نوعی عدسی محدب است.

    مثلا در مورد اول با استفاده از عدسی پرتوهای خورشید در یک نقطه روی کاغذ یا یک ماده قابل اشتغال متمرکز می‌گردند و به این طریق دمای این نقطه بالا رفته و لحظه‌ای فرا می‌رسد که آن ماده یا کاغذ آتش می‌گیرد.

    بنابراین می‌توان گفت که خصوصیت بارز این نوع عدسیها همگرا کردن یا جمع نمودن پرتوها در یک نقطه است.

    در عدسیهای همگرا ، لبه‌ها نازک تر از وسط آن هستند و بطور معمول برای کاربردهای مختلف به شکلهای گوناگون دو کوژ ، کوژ تخت و هلالی همگرا ساخته می‌شوند.

    ویژگیهای عدسی های محدب محور اصلی در حالت کلی عدسی از دو سطح کروی تشکیل شده است که هر کدام از این سطوح قسمتی از سطح یک کره کامل است.

    خطی که مراکز این کره‌ها را به یکدیگر وصل می‌کند، محور اصلی نام دارد.

    نقطه میانی عدسی را که روی محور اصلی قرار دارد، مرکز نوری می‌گویند.

    اگر بوسیله چراغ یا هر وسیله دیگری یک پرتو نوری را بر مرکز نوری عدسی بتابانیم، ملاحظه می‌کنیم که پرتو بدون انحراف از مسیر اولیه، از طرف دیگر عدسی خارج می‌شود.

    کانون عدسی محدب هرگاه یک دسته پرتو موازی با محور اصلی بر سطح عدسی بتابانیم، پرتوها بعد از شکست در عدسی و عبور از آن در طرف دیگر ، در یک نقطه روی محور اصلی همدیگر را قطع می‌کنند.

    این نقطه را کانون عدسی محدب می‌گویند.

    بدیهی است که عدسی باید دارای دو کانون باشد.

    چون از هر دو طرف می‌توان پرتوها را بر سطح آن تابانید.

    فاصله این نقطه‌ها از عدسی را فاصله کانونی عدسی گویند.

    در عدسیهای محدب فاصله کانونی را مثبت فرض می‌کنند.

    تشکیل تصویر در عدسیهای محدب فرض کنید یک عدد شمع روشن بصورت عمود بر محور اصلی و به فاصله معین P از آن قرار دارد.

    حال اگر از انتهای شمع خطی را بصورت موازی با محور اصلی عدسی بر سطح آن رسم کنیم، این خط با فرض اینکه بیانگر یک پرتو نوری است، باید بعد از عبور از عدسی در طرف دیگر ، از کانون بگذرد.

    حال خط دوم یا پرتو دوم را بر مرکز نوری عدسی می‌تابانیم.

    بدیهی است که این پرتو ، پرتو اولیه را در یک نقطه قطع می‌کند.

    حال اگر از این نقطه عمودی بر سطح محور اصلی رسم کنیم، خط حاصل بیانگر تصویر شمع در عدسی محدب خواهد بود.

    خوصیات تصویر در عدسیهای محدب از آنجا در این نوع از عدسیها تصویر ، از پرتوهای شکسته شده ، و در طرف دیگر آن تشکیل می‌شود، لذا تصویر آن مجازی خواهد بود.

    بدیهی است که اگر جسم در فاصله بین کانون و عدسی قرار گیرد، در این صورت تصویر حاصل مجازی خواهد بود.

    بنابراین برای داشتن تصویر حقیقی باید جسم در فاصله بزرگتر از فاصله کانون قرار داشته باشد.

    اگر جسم در روی کانون قرار گیرد، در اینصورت پرتو های شکسته شده همدیگر را در هیچ نقطه‌ای قطع نمی‌کنند.

    لذا اصطلاحا گفته می‌شود که تصویر در بینهایت تشکیل می‌گردد.

    بدیهی است که اگر جسم در بینهایت فرض شود، تصویر آن روی کانون خواهد بود.

    اگر جسم در فاصله کوچکتر از فاصله کانونی قرار داشته باشد، تصویر جسم علاوه بر مجازی بودن مستقیم نیز خواهد بود.

    اما اگر فاصله جسم از عدسی بزرگتر از فاصله کانونی باشد، در این صورت تصویر حقیقی بوده ولی وارونه خواهد شد.

    اگر جسم در فاصله کوچکتر از فاصله کانونی باشد، در این صورت اندازه تصویر کوچکتر از خود جسم خواهد بود و لذا عدسی خاصیت ذره بینی نخواهد داشت.

    اما اگر فاصله جسم از عدسی بزرگتر از فاصله کانونی باشد، در این صورت اندازه تصویر بزرگتر خواهد بود و عدسی نقش ذره بین را خواهد داشت.

    فرمول عدسی ها در همه انواع عدسیها اگر فاصله شی از عدسی را P و فاصله تصویر از عدسی را q و فاصله کانونی را f فرض کنیم، فرمول عدسی بصورت زیر خواهد بود: فرمول عدسیها در همه انواع عدسیها اگر فاصله شی از عدسی را P و فاصله تصویر از عدسی را q و فاصله کانونی را f فرض کنیم، فرمول عدسی بصورت زیر خواهد بود: بدیهی است که علامت کمیتهای فوق در صورت مجازی بودن منفی و در صورت حقیقی بودن مثبت است.

    اما در عدسیهای محدب فاصله کانونی همیشه مثبت است.

    ابر رسانا ها اگردمای فلزات مختلف را تا دمای معینی(دمای بحرانی) پایین اوریم پدیده شگرفی در انها اتفاق می افتد که طی ان به ناگهان مقاومتشان را در برابرعبور جریان برق تا حد صفراز دست خواهند داد .وتبدیل به ابررسانا خواهند شد.

    (البته موادی مانند نقره نیز هستند که مقاومت ویژه شان حتی در دمای صفر درجه کلوین نیز صفر نمی شود).هرچند در این دما میتوان بسیاری از مواد را ابر رسانا نمود محققا ن برای رسیدن به چنین دمایی مجبورند از هلیم مایع ویا هیدرژن استفاده کنند که بسیار گرانند .

    امروزه ابر رسانایی را در موادی ایجاد می کنند که دمای بحرانیشان زیادتر از 77 درجه کلوین است که برای رسیدن به چنین دمایی از ازت مایع استفاده می کنند که نقطه جوشش 77 درجه کلوین است.

    تاریخجه ابررسانا یی ابررسانایی برای اولین باردر سال 1911 توسط هایک کامرلینگ اونس(1926-1853)مطرح گردید.

    وی دمای یک میله منجمد جیوه ای را تا دمای نقطه جوش هلیم مایع(4.2 درجه کلوین )پایین اوردد و مشاهده نمود که مقاومت ان ناگهان به صفر رسید.

    سپس یک حلقه سربی را در دمای 7 درجه کلوین ابررسانا نمود و قوانین فارادی را بر روی ان ازمایش کردومشاهده نمود وقتی با تغییر شار در حلفه جریان القایی تولید شود.

    حلقه سربی برعکس رسانا های دیگر رفتارمی نمایدیعنی پس از قطع میدان تا مادامیکه در حالت ابر رسانایی قرار داردجریان اکتریکی را حفظ می کند.

    به عبارتی اگریک سیم ابررسانا داشته باشیم پس از بوجود امدن جریان الکتریکی دران بدون مولد الکتریکی ( مثل باطری یا برق شهر )نیز می تواند حامل جریان باشد.

    اگر در همین حالت میدان مغناطیس قوی در مجاورت سیم ابررسانا قرار دهیم ویا دمای سیم را با لاتر از دمای بحرانی ببریم جریان در ان بسرعت صفر خواهد شد چون دراین حالتها سیم را از حالت ابررسانایی خارج کرده ایم .

    اقای اونس با همین کشف جایزه نوبل فیزیک در سال 1913 را از ان خود نمود.در عکس بالا اونس و همسرش نشسته و دوستان دانشمند مانند البرت انیشتین در پشت سر وی قرار دارند.

    اثرمایسنر سپس در سال 1933 Meissner وOschsenfeld مطابق شکل نشان دادند که وقتی ماده مورد ازمایش قبل از ابررسانا شدن در میدان مغناطیسی باشد شار از ان عبور میکند ولی وقتی در جضور میدان به دمای بحرانی برسدو ابررسانا گردد دیگر هیچگونه شار مغناطیسی از ان عبور نمی کند تبدیل به یک دیامغناطیس کامل می شود که شدت میدان درون ان صفر خواهد بود.

    فیزیکدانان مختلف همواره سعی کرده بودند به موادی دست پیدا کنند که اولا دردمای پایین ابرسانا شوند و ثانیا برای فرایند سرمایش بجای هلیم پر هزینه از نیتروژن مایع استفاده شود.تا بدن ترتیب بتوانند کابلهای مناسب برای حمل و انتقال برق ویا موتور الکتریکی بسازند.

    در این شکل یک مغناطیس استوانه ای روی یک قطعه ابررسانا که توسط نیتروژن خنک شده شناور است زیرا ابررسانا طبق خاصیت یعنی اثر مایسنر می توانند خطوط میدان مغناطیس را به خارج پرتاب کنند دارد.و همانطور که میبینم قرص مغناطیسی را شناور نگه دارندو بدن ترتیب یک موتور چرخان ساخته میشود.

    بلاخره در سال 1986 دو فیزیکدان سویسی به نامهای George bednorz-Alex Muller از آزمایشگاه زوریخ توانستند ابرسانایی ازجنس سرامیک اکسید مس در دمای بالا 60 درجه کلوین بسازند که برای فرایند سرمایش از نیتروژن مایع استفاده میشد که بسیار کم هزینه بود.

    بدین ترتیب دو گام مهم برای ساخت کابلهای ابررسانایی برداشته شد و لی سرامیک اکسید مس برای ساخت کابل شکننده بود بنابراین تلاشهای دیگری آغاز شد.که تا به امروز هم ادامه دارد دانشجویان و دانشمندان ایرانی هم در این عرصه بسیار فعال هستند.

    طبق گزارش ایرنا سعید سلطانیان به همراه یک گروه علمی در دانشگاه ولو نگوگ ایالت نیو ساوت ولز استرالیا به سرپرستی پروفسور دو ابررسانایی ساختند که بالاترین رکورد را در میان ابررسانا دارد این ابررسانا به شکل سیم یا نوار ی از جنس دی برید منیزیم با پوششی از آهن است که شکل میکروسکوپی آن در پایین نشان داده شده است.

    کاربردهای مختلف ابررساناها از ابررسانایی میتوان در ساخت آهن رباهای ویژه طییف سنجهای رزونانس مغناطیسی هسته و عکسبرداری تشدید مغناطیسی هسته و تشخیص طبی استفاده نمود و همچنین چون با حجم کم جریانهای بسیار بالا را حمل می کنند می توان از آنها در ساخت موتورهای الکتریکی (ژنراتورها- کابلها) استفاده نمود که حجمشان 4 تا 6 برابر کوچکتر از موتورهای فضاپیمای امروزی هستند.

    میتوان از آهن رباهای ابررسانا در ساختمان ژیروسکوپ برای هدایت فضا پیما استفاده نمود.

    می توان از نیم رسانا ها در ساخت قطارهای شناور استفاده نمودمانند قطار سریع السیر ژاپنی ها که در سال 2000 میلادی ساخته شد وبا با سرعت 581 km/h حرکت می کرد در این بجای قطار بجای استفاده از چرخ از میدان مغناطیسی استفاده شده است.

    منبع : khayam.persianblog.com نوشته شده توسط yasaman | موضوع: | لینک ثابت | آرشیو نظرات زمان صفر 85/05/28 22:7 « زمان صفر زمان گذشته تر از گذشته بنابه نظریه انفجار بزرگ ، گسترش جهان از یک انفجار آتشین آغاز شده و تا امروز ادامه یافته است و احتمال دارد این گسترش تا بینهایت ادامه داشته باشد.

    ولی ما یقینا می‌خواهیم بدانیم پیش از این انفجار اولیه وضع از چه قرار بوده است.

    اما برای فهمیدن این موضوع باید از دیوار زمان صفر عبور کنیم.

    نه تنها در عرصه فیزیک ، بلکه حتی در عرصه منطق نیز دشواریهای زیادی در این سیر وجود دارد.

    ما نمی‌توانیم تاریخ کائنات را از زمان صفر یعنی درست لحظه آفرینش فضا و زمان آغاز کنیم ولی قادریم آن را از لحظه‌های بسیار کوتاه و غیر قابل تصور یعنی 43- ^10 ثانیه پس از انفجار بزرگ آغاز کنیم.

    قوانین بنیادی فیزیک توانسته‌اند از امروز تا آن لحظه که کائنات بسیار بسیار کوچک ، داغ و غلیظ بوده ، استواری خود را حفظ کنند.

    خصوصیات کائنات در زمان صفر در 43- ^10 ثانیه پس از انفجار بزرگ ، کائنات بیش از 35 - ^ 10 متر قطر نداشته و ده میلیون میلیارد میلیارد بار کوچکتر از یک اتم هیدروژن بوده است.

    در این زمان عالم چنان جوان است که نور نمی‌تواند به دورها سفر کند و افق کیهانی که کائنات قابل دید را در بر می‌گیرد، بسیار نزدیک است.

    در این زمان حرارت به 32 ^ 10 کلوین میرسد.

    کائنات بسیار غلیظ و فشرده (96 ^ 10 برابر غلظت آب) و انرژی آن غیر قابل اندازه گیری است.

    چنانچه اگر بخواهیم چنین نیرویی تولید کنیم باید دستگاههای تسریع کننده ذرات اولیه‌ای بسازیم که چندین سال نوری قطر داشته باشند.

    زمان صفر یا زمان پلانک در 43- ^10 ثانیه پس از انفجار ، کائنات چنان فشرده و غلظت چنان انباشته است که نیروی جاذبه ، که در حالت معمولی در مقیاس میکروسکوپی قابل اغماض است، مانند نیروها از قبیل نیروهای هسته‌ای قوی و ضعیف نیروی الکترومغناطیسی ، بسیار قوی می‌باشد.

    ولی ما نمی‌توانیم رفتار و مشخصات اتمها و نور را در جاذبه بسیار قوی دریابیم.

    این مساله نخستین بار در آغاز قرن حاضر توسط "ماکس پلانک" مطرح شد.

    به همین دلیل زمان 43- ^10 ثانیه را "زمان پلانک" می‌گویند.

    که در آن فیزیک از توضیح عاجز می‌شود و مرز آگاهی‌ها به نهایت می‌رسد.

    جاذبه سد زمان صفر برای پشت سر گذاشتن زمان پلانک به نظریه‌ای‌ کوانتیک از جاذبه نیاز است که در آن قوه جاذبه بتواند با سایر نیروها متحد شود.

    فیزیکدانان در تلاشند تا یک نظریه جامع طبیعت بیابند که در آن چهار نیروی حاکم بر جهان بصورت یک نیروی واحد عمل کنند.

    و تا کنون موفق شده‌اند شرایط گرد آمدن نیروهای هسته‌ای قوی و ضعیف و نیروی الکترومغناطیسی را بدست آورند.

    ولی نیروی جاذبه همچنان با اتحاد با این نیروها مخالفت می‌کند.

    این نیرو که بر دنیای بینهایت بزرگها حاکم است از هر گونه اتحاد با دنیای بینهایت خردها سرباز می زند.

    پیوند و اتحاد مکانیک کوانتومی با نسبیت در حال حاضر همچنان سدی غیر قابل عبور است و حتی اینشتین که در سی سال آخر عمر خود ، سر سختانه در این زمینه به کار پرداخت، نتوانست از این سد بگذرد.

    تا وقتی مقاومت و استقامت جاذبه شکسته نشود، فراتر از زمان پلانک را در یافتن ، کاری غیر ممکن است.

    این زمان مرز و حد نهایی آگاهی و شناخت ما است.

    در پشت دیوار پلانک واقعیتی هنوز دست نیافتنی پنهان است که در آن جفت فضا ـ زمان کائنات چهار بعدی ما می‌تواند کاملا متفاوت باشد با دیگر وجود نداشته باشد.

    پشت دیوار پلانک فیزیکدانهایی که شکافهای

  • فهرست:

    ندارد.


    منبع:

    ندارد.


تحقیق دانش آموزی در مورد دانلود مقاله ذره بین, مقاله دانشجویی با موضوع دانلود مقاله ذره بین, پروژه دانشجویی درباره دانلود مقاله ذره بین

نور ماهیت ذر‌ه‌ای اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است. ماهیت موجی همزمان با ...

علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه می‌کند. مفاهیم بنیادی پدیده‌های طبیعی تحت عنوان قوانین فیزیک مطرح می‌شوند. این قوانین به توسط علوم ریاضی فرمول بندی می‌شوند، بطوری که قوانین فیزیک و روابط ریاضی باهم در توافق بوده و مکمل هم هستند و دوتایی قادرند کلیه پدیده‌های فیزیکی را توصیف نمایند. تاریخچه علم فیزیک از روزگاران باستان مردم سعی می‌کردند رفتار ماده را بفهمند. و ...

کاربرد های لیزر مقدمه امروزه لیزر کاربردهای بیشماری دارد که همه زمینه های مختلف علمی و فنی فیزیک-شیمی-زیست شناسی - الکترونیک و پزشکی را شامل می‌شود. همه این کاربردها نتیجه مستقیم همان ویژگی‌های خاص نور لیزر است. کاربرد لیزر در فیزیک و شیمی اختراع لیزر و تکامل آن وابسته به معلومات پایه‌ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده‌اند. بنابراین طبیعی است که استفاده ...

مقدمه ویژگی های عکاسی و شناخت ماهیت آن به عنوان رسانه ای که جایگاههای متعددی در زمینه های مختلف یافته ،جز از این طریق مطالعه ا ین ویژگیها میسر نمی شود. در حقیقت،عکاسی سه ویژگی علمی،صنعتی وهنری داردوباید پذ یرفت که عکاسی نه تنها علم یا صنعت وهنر،بلکه از هریک نشانه ای بسزا دارد،زیرا درآغاز، عکاسیمانند یک پدیده علمی تولدیافت وقوانین علمی در پیشرفت آن موثرافتاد ندو سپس مانند یک صنعت ...

مقدمه امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجاییکه مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل ...

مقدمه عدسیها همانند آینه‌ها دارای تصاویر حقیقی و مجازی هستند، این تصاویر از پرتوهای همگرا شونده و واگرا شونده بازتابی ایجاد می‌شود. بر خلاف آینه‌ها در عدسیها عبور نور نیز مطرح است و تصاویر ممکن است در پشت و جلوی عدسی شکل گیرد. عدسیهایی که ضخامت قسمتهای کناریش بزرگتر باشد، پرتوهای موازی را همگرا می‌کند و عدسی محدب نام دارد، که دارای فاصله کانونی مثبت می‌باشد. بر خلاف آینه‌ها ...

طرح مساله سخن این کنفرانس روزنه‌ایست به سوی نور و جهانی از علمی که لیزر نامگذاری شده است. اکنون که لیزر به عنوان یکی از قوی‌ترین منابع انرژی در طبیعت و در اختیار ماست و از این لحاظ حائز اهمیت است، دارای استفاده‌های شایانی نیز در کلیه زمینه‌های علمی می‌باشد و برای پیشرفت‌های در تمامی زمینه‌های علمی، صنعتی اقتصادی و ... به آن نیازمندیم و باید از آن بهره بگیریم. به امید آنکه ...

فیزیک پلاسما از شاخه‌های فیزیک است که به بررسی یکی از اشکال وجود ماده یعنی پلاسما می‌پردازد. از انجا که بخش بزرگی از جرم قابل مشاهدهٔ عالم، ستارگان با دماهای بسیار زیاد هستند، امکان وجود ماده به صورت‌های جامد و مایع در این اجرام منتفی است. از سوی دیگر گاز نیز، به دلیل این حرارت بسیار زیاد، تبدیل به یک توده یونیزه شده و به صورت مخلوطی از یون‌های مثبت(هسته اتم ها) یون‌های منفی ...

کار اصلی چشم آن است که نورهایی را که از خارج دریافت می کند طوری روی پرده شبکیه متمرکز کند که تصویر دقیقی از شیء مورد نظر روی پرده شبکیه ایجاد شود. شبکیه این تصاویر را به صورت پیام های عصبی به مغز ارسال می کند و این پیام ها در مغز تفسیر می شوند. بنابراین برای واضح دیدن، قبل از هرچیز لازم است که نور به طور دقیق روی پرده شبکیه متمرکز شود. ساختمان چشم شبیه یک کره است. در قسمت جلوی ...

- مقدمه به طور کلی در میکروسکوپ های الکترونی سه نوع عدسی وجود دارد: 1-عدسی جمع کننده (Condenser Lens) 2-عدسی شیئی (Objective Lens) 3-عدسی تصویری (Projector Lens) عدسی جمع کننده دسته الکترون را بر روی نمونه متمرکز می نماید. عدسی شیئی یک تصویر بزرگ شده اولیه ایجاد نموده، برای حصول بزرگنمایی بیشتر از عدسی تصویری استفاده می شود. تصویر نهایی بدست آمده بر روی یک صفحه فلورسنت قابل رویت ...

ثبت سفارش