تاریخچه کشف ویتامین A:
کشف اولیه ویتامین A به مک کالوم و دیویس نسبت داده شده است.
در سال 1913 آنها دریافتند که موشهای صحرایی تغذیهشده با جیره بدون ویتامین A همراه با چربی خوک (Lard) رشد نکردند ولی موشهای تغذیهشده با همان جیره به علاوه کره، رشد کردند.
در همان سال، اسبورن و مندل گزارش کردند که در کره چیزی وجود دارد که برای زندگی و رشد موش ضروری است.
در سال 1930، مور از انگلستان نشان داد که موشهای مبتلا به کمبود ویتامین A وقتی با کاروتن تغذیه شدند، مقدار زیادی ویتامین A در کبد آنها یافت شد.
نقش پیشویتامینی کاروتن وقتی مشخص گردید که کرر از سویس موفق به تعیین ساختمان شیمیایی بتاکاروتن در سال 1930 و ویتامین A در سال 1931 شد.
ویتامین A اولین ویتامینی بود که ساختمان شیمیایی آن مشخص گردید.
در سال 1937، ویتامین A به صورت خالص و به شکل متبلور در آزمایشگه تولید شد.
در سال 1947 برای اولین بار ویتامین A به صورت سنتتیک تهیه شد.
(5 و 8)
ساختمان و شیمیایی
از نظر شیمیایی، ویتامین A معروف به رتینول با فرمول بسته (C20H29OH) یک الکل منوهیدریک غیراشباع میباشد.
زنجیر کربنی آن دارای چهار اتصال دوگانه است که به یک حلقه ششضلعی بتایونون منتهی میگردد.
این حلقه دارای یک اتصال دوگانه در بین کربنهای α و β نسبت به زنجیر کربنی میباشد.
این ویتامین از مشتقات کربورهای کربنی است و این کربورها از پلیمریزه شدن هیدروکربن اشباعنشده بنام ایزوپرن (CH2=C-CH=CH2) حاصل میگردند.
فرمول ساختمانی ویتامین A به صورت زیر میباشد.
(4 و 34).
ایزومرهای ویتامین A
این ترکیب دارای تعداد زیادی ایزمرهای هندسی سیس و ترانس میباشد ولی تمام ایزومرها در طبعیت وجود ندارند و حتی از طریق مصنوعی نیز تهیه نشدهاند.
(4)
تاکنون شماری از مشتقات و استریو ایزومرهای ویتامین A یافت شدهاند که از نظرارزش بیولوژیکی با هم متفاوت میباشند.
ویتامین A ممکن است به شکل آلدئیدی (رتینال) یا الکلی (رتینول) یافت شود که این اشکال دارای فعالیت ویتامین A میباشند.
اگرچه اسید رتینوئیک بخشی از وظایف ویتامین A را انجام میدهد.
یک واحد بینالمللی ویتامین (IU) A برابر با 3/0 میکروگرم ویتامین A الکل خالص تمامترانس میباشد.
از آنجا که این ماده نسبتا ناپایدار است غالباً 344/0 میکروگرم ویتامین A استات خالص تمام بعنوان یک ماده پایدارتر استعمال میگردد.
در صورتی که سنتز ویتامین A با دقت کنترل نگردد، ایزومرهای سیس مختلفی تولید خواهد شد که این ایزومرها از ارزش بیولوژیکی کمتری برای حیوانات برخوردار هستند (8).
کاروتنوئیدها (پیشویتامینهای A):
کاروتنوئیدها پیگمانهایی هستند به رنگ زرد مایل به نارنجی و از نظر شیمیایی عبارتند از هیدروکربورهایی با فرمول خام (C40H56) که فرمول گسترده آنها تشکیل شده است از یک زنجیر کربنی که در یک یا دو انتها به یک حلقه ششضلعی منتهی میشود.
کارتنوئیدها شامل دو دسته هستند:
1) کاروتنها : α، β و γ
2) زانتوفیل ها که شامل طیف وسیعی از ترکیبات مانند لوتئین ، کریپتوزانیتن ، زیزانتین آفانین و غیره هستند.
اکثر این ترکیبات نمیتوانند به ویتامین A تبدیل شوند و فقط کریپتوزانتین و آفانین قابلیت تبدیل شدن به ویتامین A را دارند.
برای اینکه کاروتنوئیدهای مختلف پتانسیل فعالیت ویتامین A را داشته باشند باید لااقل حاوی یک حلقه کامل بتایونون باشند.
بتاکاروتن که دارای دو حلقه بتایونون است یک ملکول مضاعف ویتامین A بوده و از نظر تئوری، اگر شکسته شدن در مرکز ملکول واقع شود میتواند دو ملکول ویتامین A فعال ایجاد کند.
بنابراین بتاکاروتن با دوحلقه بتایونون فعالیت ویتامین A بیشتری از سایر کاروتنوئیدها دارد.
آلفاکاروتن اگرچه از نظر ساختمان گسترده ملکولی شبیه بتاکاروتن است ولی در حلقه β محل پیوند دوگانه عوض شده است.
در گاماکاروتن، حلقه β باز است.
بنابراین آلفاکاروتن و گاماکاروتن قابلیت ایجاد یک ملکلول ویتامین A را دارند (4 و 8).
متابولیسم الف) جذب: محل اصلی جذب محل اصلی جذب ویتامین A و کاروتنوئیدها در مخاط ابتدای ژوژنوم میباشد.
جذب ویتامین A و بتاکاروتن در روده کوچک توسط میسلهایی (گویچههایی) همانند آنچه در جذب اسیدهای چرب اتفاق میافتد، صورت میپذیرد.
در سلولهای رودهای، قسمت اعظم بتاکاروتن به ویتامین تبدیل میگردد که قسمت زیادی از آن دوباره استریفیه شده و به همراه شیلومیکرونها از طریق سیستم لنفاوی وارد جریان خون و کبد و میشوند.
در این مراحل مقدار کمی از از رتینول اکسیدشده و به رتینال و اسید رتینوئیک تبدیل میشود.
کاروتن نیز توام با تبدیلات آنزیمی جذب میشود.
برا ی این منظور ابتدا به رتینال تبدیل گردیده، سپس به صورت رتینول جذب میشود.
وجود اسیدهای چرب با وزن ملکلولی کم، جذب پیشساز ویتامین را افزایش میدهد (7).
در حالت استاندارد از تبدیل 1 میلیگرم بتاکاروتن، 667/1 واحد بینالمللی ویتامین A ایجاد میشود که در طیور نیز این رابطه صدق میکند.
در طیور یک واحد بینالمللی ویتامین A برابر 6/0 میکروگرم بتاکاروتن است.
فعالیت ویتامین A برحسب واحد بینالمللی اندازهگیری میشود و رابطه آن با اشکال مختلف ویتامین A به قرار ذیل است: یک واحد بینالمللی ویتامین A برابر است با 3/0 میکروگرم رتینول یک واحد بینالمللی ویتامین A برابر است با 344/0 میکروگرم رتینول استات یک واحد بینالمللی ویتامین A برابر است با 55/0 میکروگرم رتینول پالمتات (7 و 8) ب) انتقال: شکل فعال فیزیولوژیکی ویتامین A (رتینول) بوسیله پروتئین ناقل ویژهای که اصطلاحا پروتئین متصلشونده با رتینول (RBP) نام دارد از کبد جابجا میشود.
انتقال ویتامین A به بافتها توسط فرآیندهایی کنترل میشود که تولید و ترشح RBP را بوسیله کبد تنظیم میکنند.
RBP یک حلقه پلیپپتیدی با وزن ملکلولی 2100 دالتون میباشد و با رتینول یک کمپلکس مولار 1:1 (یک به یک) تشکیل میدهد.
حدود 90% RBP موجود در پلاسما به پیشآلبومین متصلشونده با تیروکسین، کمپلکسی را تشکیل میدهد.
رتینول، RBP و کمپلکس آلبومین همراه با هم به بافت مورد نظر منتقل میگردند و در آنجا به گیرنده موجود در سطح سلولی متصل میشوند و رتینول وارد سلولهای بافت مورد نظر میگردد.
پروتئینهای متصلشونده به رتینول بنام Cellular RBP در سلول وجود دارند که در جابجایی رتینول در داخل سلول و احتمالاً فعالیت بیولوژیکی آن دخالت دارند (5 و 7 و 11 و 56).
ج) ذخیره: بیش از 95% ویتامین A در کبد و مقدار کمی از آن در بافتهای چربی، ریه و کلیهها ذخیره میشوند.
کاروتنوئیدها در چربیها ذخیره میگردند.
در طیور فقط هیدروکسی کاروتنوئیدها جذب میشوند.
مشخص شده است که هرچه طول مدت روشنایی و میزان نور در پرورش طیور در قفس زیادتر باشد، مقدار ویتامین A کبد کاهش مییابد.
سطح ویتامین Aالکلی خون در تمام اوقات نسبتا ثابت است.
وقتی یک دز بالای ویتامین A مصرف شود سطح آن بطور موقت بالا میرود و چند ساعت بعد به حالت طبیعی برمیگردد.
فقط وقتی ذخیره ویتامین Aدر کبد تمام شده باشد و مقدار مصرف روزانه نیز کم باشد، سطح ویتامین در خون شروع به تنزل میکند.
کل ذخیره ویتامین Aدر کبد بستگی به میزان مصرف قبلی دارد.
بیشترین ذخیره کبدی مربوط به کریستالین ویتامین Aاستات و کمترین ذخیره مربوط به کریستالین کاروتن میباشد (7 و 8 و 34).
د) دفع: رتینول در کبد کنژوگه شده و از طریق صفرا دفع میشود.
همچنین این ماده طی فرآیند اکسیداسیون در کبد، کلیهها و روده به رتینال و سپس اسید رتینوئیک تبدیل میشود که اسید رتینوئیک به صورت آزاد و یا گلوکورونیداز از راه صفرا دفع میگردد.
ویتامین A که بصورت گلوکورونید توسط صفرا دفع میشود تحت اثر آنزیم بتاگلوکورونیداز حاصله از باکتریهای روده تجزیه و مجددا جذب میگردد (7).
اعمال متابولیکی 1) بینایی: ویتامین Aالکلی یا رتینول در شبکیه چشم تحت تأثیر یک آنزیم دهیدروژناز به ویتامینA آلدئیدی یا رتینال (تمامترانس) تبدیل میشود که در تاریکی به ایزومر 11- سیس رتئین آلدئید تبدیل شده و سپس با یک ترکیب پروتئینی به نام اوپسین ترکیب شده و از این ترکیب یک رنگدانه حساس به نور بنام رودوپسین در سلولهای استوانهای شبیکه چشم تولید میشود که عامل موثری در بینایی حیوان در نور کم میباشد.
لازم به ذکر است که واکنشهای فوق در حضور نور بصورت معکوس انجام میشود.
همچنین رتینال در یک واکنش شیمیایی مشابه در سلولهای مخروطی شبیکه چشم برای رویت رنگها در نور زیاد عمل میکند همچنین ایزمورهای فضایی رتینال که رتینین نامیده میشوند، نقش عمده و مهمی در بینایی دارند.
عمل تطابق چشم در تاریکی نیز به این فرآیند مربوط میشود.
در روند بینایی و فعال و انفعالاتی که حین بینایی انجام میشود، مقداری از رتینول از بین میرود که در صورت عدم جایگزینی در طولانیمدت موجب کوری خواهد شد.
(7).
2) تولید مثل: اسیدرتینوئیک تمام اعمال رتینول بجز اثر آن در بینایی و تولید مثل را انجام میدهد.
بنابراین افزودن اسیدرتینوئیک به جیره موشهای صحرایی و جوجهها، مطالعات مربوط به اثرات رتینول و رتینال در تولید مثل و بینایی را بدون اینکه با سایر عوارض ناشی از کمبود ویتامین تداخل داشته باشد، امکانپذیر کرده است (5 و 8).
3- حفظ غشاهای مخاطی: ویتامین A جهت حفظ بافتهای پوششی تمام حفرات و سطوح بدن که به نحوی با محیط خارج در ارتباط میباشند، مانند بافت پوششی دستگاههای تنفس، گوارش.
ادراری ـ تناسلی و بافت پوششی قرنیه ضروری است (7).
اثر ویتامین A در حفظ سلامت غشای مخاطی وقتی بخوبی مشخص میشود که از میزان شاخی شدن واژن موشهای صحرایی ماده به عنوان روشی برای تعیین و ارزیابی ویتامین A استفاده میشود.
موشهایی که جیره فاقد ویتامین Aدریافت میکند، به جای سلولهای طبیعی غشای مخاطی (اپیتلیال و استوانهای)، دارای سلولهای شاخی (اپیتلیال چیندار) میباشند.
افزودن رتینول سبب عادی شدن سلولهای اپیتلیوم میشود.
(5) 4) نقش کوانزیمی و هورمونی: ویتامین A بصورت یک کوانزیم واسطهای در سنتز گلیکوپروتئینها عمل میکند و همچنین بصورت یک هورمون استروئیدی در هسته سلول عمل کرده و منجر به تمایز میگردد (8).
5) سنتز موکوپلی ساکاریدها: تجربه نشان میدهد که کمبود ویتامین A موجب کاهش سرعت ا یجاد موکوپلی ساکاریدها در بافتهای حیوان میگردد و تجویز ویتامین A باعث طبیعی شدن میزان موکوپلی ساکاریدها میشود.
از آنجائیکه این ترکیبات در ساختمان غضروفها (کندروئیتین سولفوریک اسید) و همینطور در ترشحات مخاطی از این راه توجیه مینمایند.
تحقیقات سالهای اخیر نشان میدهد که ویتامین Aدارای نقش مهمی در بیوسنتز پروتئینها میباشد و بعلاوه در متابولیسم گوگرد و تشکیل ریشه فعال سولفات شرکت مینماید و همانطور که مشخص گردیده است ریشه سولفات از ترکیبات ضروری در عمل سنتز موکوپلی ساکاریدها میباشد.
برای آنکه ریشه سولفات بصورت پیوند استری در ترکیبات موکوپلی ساکاریدها از قبیل کندروئیتین سولفوریک اسید و موکوئیتین سولفوریک ا سید تبدیل گردد، ابتدا باید به کمک ATP بصورت فعال درآید و این واکنش احتمالاً تحت تأثیر ویتامین Aمیباشد.
(8) 6) غشاهای سلولی و درون سلولی ویتامین A در تغییر خاصیت نفوذپذیری غشاهای لیپوپروتئینی سلول اندامکهای داخل سلولی نقش عمدهای دارد.
این ویتامین به غشای لیپوپروتئینی نفوذ میکند و در مقادیر مطلوب به عنوان پلی میان لیپید و پروتئین عمل میکند و بنابراین باعث ثبات غشا میشود.
البته هیپروتیامینوز A موجب تغییرات در غشا شده و آنها را شکننده مینماید و نیز سبب تخریب لیزوزومها و اریتروسیتها میشود.
همچنین این ویتامین یک کاتالیزور در پدیدههای اکسیداسیون و احیا در سلولهای زنده عمل میکند (5 و 7 و 8 و 56).
7) رشد استخوان: مطالعات نشان میدهند که کمبود ویتامین A در مرغابیهای جوان، سبب تعویق و تحلیل چشمگیری در شد غضروف درونی استخوانها میشود و ازدیاد آن، رشد این استخوانها را تسریع میکند (5).
8) سنتز کورتیکوستروئیدها: جیرههای غنی از پروتئین، طیور را دچار استرس مینمایند و در نتیجه غده فوق کلیه بزرگ و ترشحات کورتیکوستروئیدی افزایش مییابد و همزمان، مقدار ذخایر کبدی ویتامین A کاهش مییابد اما کمبود ویتامین موجب آتروفی غده فوق کلیه و کاهش ترشح کورتیکوستروئیدها نمیشود.
در صورتی که در محیط کشت غده فوق کلیوی خارج شده از بدن جوجههایی که با کمبود ویتامین A مواجه هستند، مقدار رتینول را افزایش داده شود، تولید کورتیکوسترون افزایش مییابد (5 و 7).
9) فشار مایع مغزی نخاعی: عدم تعادل شدید، اولین علامت کمبود بیش از حد ویتامین A در جوجههای در حال رشد است.
بدلیل آنکه معمولاً در این بیتعادلی اولیه ناشی از کمبود ویتامین A، ضایعاتی در مخ و مخچه مشاهده نمیشود، به نظر میرسد فشار زیادی که بر مغز وارد گردیده، باعث بروز آن میشود (5).
10) سرطان: دخالت ویتامین A در تولید مثل و بافتهای پوششی بیانگر نقش این ویتامین در تقسیم سلولی است.
نشان داده شده است که حیوانات آزمایشگاهی که با کمبود ویتامین A مواجه هستند، در مقابل مواد شیمیایی سرطانزا حساسترند، در حالی که مقادیر بالایی از رتینوئیدها قادرند از ایجاد سرطان توسط بعضی از مواد شیمیایی سرطانزا جلوگیری بعمل آورند.
11) ایمنی: این ویتامین در سیستم ایمنی همورال و سلولی دخالت دارد.
به همین دلیل حیواناتی که کمبود ویتامین A دارند نسبت به عفونتهای مختلف حساس میشوند.
تجویز ویتامینA به عنوان تقویتکننده سیستم ایمنی در چنین مواردی توصیه میگردد.
در فصل سوم راجع به این موضوع بطور مفصل بحث خواهد شد.
12) فیزیولوژی غده تیروئید: در حالت کمبود ویتامین A، ترشح تیروکسین کاهش مییابد